The freezing front depth (z(ff)) of annual freeze-thaw cycles is critical for monitoring the dynamics of the cryosphere under climate change because z(ff) is a sensitive indicator of the heat balance over the atmosphere-cryosphere interface. Meanwhile, although it is very promising for acquiring global soil moisture distribution, the L-band microwave remote sensing products over seasonally frozen grounds and permafrost is much less than in wet soil. This study develops an algorithm, i.e., the brightness temperature inferred freezing front (BT-FF) model, for retrieving the interannual z(ff) with the diurnal amplitude variation of L-band brightness temperature (?T-B) during the freezing period. The new algorithm assumes first, the daily-scale solar radiation heating/cooling effect causes the daily surface thawing depth (z(tf)) variation, which leads further to ?T-B; second, ?T-B can be captured by an L-band radiometer; third, z(tf) and z(ff) are negatively linear correlated and their relation can be quantified using the Stefan equation. In this study, the modeled soil temperature profiles from the land surface model (STEMMUS-FT, i.e., simultaneous transfer of energy, mass, and momentum in unsaturated soil with freeze and thaw) and T-B observations from a tower-based L-band radiometer (ELBARA-III) at Maqu are used to validate the BT-FF model. It shows that, first, ?T-B can be precisely estimated from z(tf) during the daytime; second, the decreasing of z(tf) is linearly related to the increase of z(ff) with the Stefan equation; third, the accuracy of retrieved z(ff) is about 5-25 cm; fourth, the proposed model is applicable during the freezing period. The study is expected to extend the application of L-band T-B data in cryosphere/meteorology and construct global freezing depth dataset in the future.
2023-01-01 Web of Science