Permafrost is a widespread phenomenon in the cold regions of the globe and is under-represented in global monitoring networks. This study presents a novel low-cost, low-power, and robust Autonomous Electrical Resistivity Tomography (A-ERT) monitoring system and open-source processing tools for permafrost monitoring. The processing workflow incorporates diagnostic and filtering tools and utilizes open-source software, ResIPy, for data inversion. The workflow facilitates quick and efficient extraction of key information from large data sets. Field experiments conducted in Antarctica demonstrated the system's capability to operate in harsh and remote environments and provided high-temporal-resolution imaging of ground freezing and thawing dynamics. This data set and processing workflow allow for a detailed investigation of how meteorological conditions impact subsurface processes. The A-ERT setup can complement existing monitoring networks on permafrost and is suitable for continuous monitoring in polar and mountainous regions, contributing to cryosphere research and gaining deeper insights into permafrost and active layer dynamics. Permafrost, frozen ground in cold regions, has significant impacts on the global environment. Monitoring of permafrost is crucial because it influences the global carbon cycle, hydrology, contaminant movement, and ecosystem stability. However, current monitoring systems have limitations, particularly in remote regions like Antarctica. To tackle this challenge, a new monitoring system, Autonomous Electrical Resistivity Tomography (A-ERT), was introduced. A-ERT is a geophysical technique that employs electrical signals to study ground freezes and thaws with high precision over time. Alongside this, open-source processing tools were developed to process obtained A-ERT data and efficiently extract essential information from large data sets. The developed A-ERT system is robust, low-cost, low-power, and designed to operate in harsh conditions. Tested in Antarctica, our findings show that A-ERT data combined with processing pipelines offers a valuable tool for examining freezing and thawing processes in extreme environments. The proposed setup can contribute to a network of autonomous permafrost monitoring systems, important for cryosphere research and advancing our understanding of climate change's impact on permafrost dynamics. We present a robust low-cost Autonomous Electrical Resistivity Tomography system for permafrost monitoring in polar and mountainous regions We introduce an open-source tool for processing and inverting large data sets, enabling quick and efficient extraction of key information Field experiments conducted in Antarctica show high-temporal-resolution imaging of ground freezing and thawing dynamics
The Tibetan Plateau, known as the world's Third Pole due to its high altitude, is experiencing rapid, intense climate change, similar to and even far more than that occurring in the Arctic and Antarctic. Scientific data sharing is very important to address the challenges of better understanding the unprecedented changes in the Third Pole and their impacts on the global environment and humans. The National Tibetan Plateau Data Center (TPDC, http://data.tpdc.ac.cn) is one of the first 20 national data centers endorsed by the Ministry of Science and Technology of China in 2019 and features the most complete scientific data for the Tibetan Plateau and surrounding regions, hosting more than 3,500 datasets in diverse disciplines. Fifty datasets featuring high-mountain observations, land surface parameters, near-surface atmospheric forcing, cryospheric variables, and high-profile article-associated data over the Tibetan Plateau, frequently being used to quantify the hydrological cycle and water security, early warning assessments of glacier avalanche disasters, and other geoscience studies on the Tibetan Plateau, are highlighted in this manuscript. The TPDC provides a cloud-based platform with integrated online data acquisition, quality control, analysis, and visualization capability to maximize the efficiency of data sharing. The TPDC shifts from the traditional centralized architecture to a decentralized deployment to effectively connect Third Pole-related data from other domestic and international data sources. As an embryo of data sharing and management over extreme environment in the upcoming big data era, the TPDC is dedicated to filling the gaps in data collection, discovery, and consumption in the Third Pole, facilitating scientific activities, particularly those featuring extensive interdisciplinary data use.