A novel MgO-mixing column was developed for deep soft soil improvement, utilizing in-situ deep mixing of MgO with soil followed by carbonation and solidification via captured CO2 injection. Its low carbon footprint and rapid reinforcement potential make it promising for ground improvement. However, a simple and cost-effective quality assessment method is lacking. This study evaluated the electrical properties of MgO-mixing columns using electrical resistivity measurements, exploring relationships between resistivity parameters and column properties such as saturation, strength, modulus, CO2 sequestration and uniformity. Microscopic analyses were conducted to elucidate the mechanisms underlying carbonation, solidification, and electrical property changes. The life cycle assessment (LCA) was performed to assess its carbon reduction benefits and energy consumption. The findings reveal that the electrical resistivity decreases rapidly with increasing test frequency, remaining constant at 100 kHz, with the average electrical resistivity being slightly higher in the upper compared to the lower section. Additionally, electrical resistivity follows a power-law decrease with increasing saturation. Both electrical resistivity and the average formation factor exhibit strong positive correlations with unconfined compressive strength (UCS) and deformation modulus, enabling predictive assessments. Furthermore, CO2 sequestration in MgO-mixing columns is positively correlated with electrical resistivity, and the average anisotropy coefficient of 0.96 indicates good column uniformity. Microstructural analyses identify nesquehonite, dypingite/hydromagnesite, and magnesite as significant contributors to strength enhancement. Depth-related changes in electrical resistivity parameters arise from variations in the amount and distribution of carbonation products, which differently impede current flow. LCA highlights the significant low-carbon advantages of MgOmixing columns
This study investigates the effectiveness of deep soil mixing (DSM) in enhancing the strength and modulus of organic soils. The research evaluates how varying cement types, binder dosages, water-to-cement (w/c) ratios, and curing durations affect the mechanical properties of two different organic soils that were used; natural soil from the Golden Horn region of Istanbul with 12.4% organic content, and an artificial soil created from a 50/50 mixture of Kaolin clay and Leonardite, which has an acidic pH due to high organic content. The specimens were cured for four durations, ranging from seven days to one year. The testing program included mechanical testing; Unconfined Compression Tests (UCS), Ultrasonic Pulse Velocity (UPV) measurements, and chemical analyses; XRay Fluorescence (XRF) and Thermogravimetric analyses (TGA). The UCS tests indicated that higher binder dosages and extended curing durations significantly improved the strength. Higher w/c ratios resulted in decreased strength. Long curing durations resulted in strength values which were four times the 28-day strength values. This amplified effect of strength gain in longer durations was evaluated through Curing time effect index, (fc). The results were presented in terms of cement dosage effect, effect of cement type, effect of total water/cement ratio (wt/c), standard deviation values, E50 values and curing time effect index (fc) values respectively. Results of UPV tests were used to develop correlations between strength and ultrasonic pulse velocities. Quantitative evaluations were made using the results of XRF and TGA analyses and strength. Significant amount of data was produced both in terms of mechanical of chemical analyses.
Planning embankments demands comprehensive studies to select suitable materials, enhance soil stability, ensure optimal performance, and comply with building code requirements and sustainability standards. This study offers an evaluation of various alternatives and their effectiveness for constructing embankments on weak soil using the 2D finite element software Plaxis 8. It highlights the convergence of different techniques, offering flexibility in selecting the optimal strategy for projects. The behaviour of multilayer clayey soil under an embankment of lightweight filling materials such as mixed sawdust or geo-foam and that carrying an embankment of traditional fill material improved by deep replacement techniques like concrete piles (CP), deep-mixing columns (DMC), stone columns (SC), and sand piles (SP) were compared considering factors like stress distribution, pore water pressure, and settlement of the soil. The results demonstrate that lightweight materials reduced settlement by 11-98% and stress by 5-89%, while deep replacement techniques reduced settlement by 8.5-75% and stress by 44-88%. Notably, the study underscores the effectiveness of DMC in promoting soil reuse compared to CP.
Sensitive marine clays (SMCs) often pose considerable problems in the construction of embankments for transportation structures. In this study, extensive mechanical, microstructural, and monitoring experiments were carried out to evaluate the evolution of mechanical properties of SMCs stabilized via Deep Mixing Method. The results indicate that unconfined compressive strength and secant modulus increase with curing time. A significant improvement in mechanical properties is observed at early ages. Higher binder contents produce higher mechanical properties after same curing period. However, excess binder content does not provide significant improvement effects. The addition of ground granulated blast furnace slag (GGBFS) results in higher mechanical properties after long-term curing, and the enhancing degree is more evident with a higher proportion of GGBFS. But the situations are reversed at young age due to the retarding effect of GGBFS. These observations are also supported by results of physical properties, mercury instruction porosimetry, suction monitoring, and X-ray diffraction analyses. In addition, predictive models are established based on elastic-plastic theory and binder hydration model. The developed models are implemented in COMSOL Multiphysics and validated against experimental results. A good agreement is observed between experimental and predicted results which confirms the ability of developed models to predict the mechanical characteristics.