This study investigates the microhardness and geometric degradation mechanisms of interfacial transition zones (ITZs) in recycled aggregate concrete (RAC) exposed to saline soil attack, focusing on the influence of supplementary cementitious materials (SCMs). Ten RAC mixtures incorporating fly ash (FA), granulated blast furnace slag (GBFS), silica fume (SF), and metakaolin (MK) at 10 %, 15 %, and 20 % replacement ratios were subjected to 180 dry-wet cycles in a 7.5 %MgSO4-7.5 %Na2SO4-5 %NaCl solution. Key results reveal that ITZ's microhardness and geometric degradation decreases with exposure depth but intensifies with prolonged dry-wet cycles. The FAGBFS synergistically enhances ITZ microhardness while minimizing geometric deterioration, with ITZ's width and porosity reduced to 67.6-69.0 mu m and 25.83 %, respectively. In contrast, FA-SF and FA-MK exacerbate microhardness degradation, increasing porosity and amplifying microcrack coalescence. FA-GBFS mitigates the diffusion-leaching of aggressive/original ions and suppresses the formation of corrosion products, thereby inhibiting the initiation and propagation of microcracks. In contrast, FA-SF and FA-MK promote the formation of ettringite/gypsum and crystallization bloedite/glauberite, which facilitates the formation of trunk-limb-twig cracks.
The protection of the ecological environment and the scarcity of renewable resources are increasingly concerning global issues. To address these challenges, efforts have been made to use desert sand and fly ash in the preparation of building materials. This study attempts to replace river sand with desert sand and cement with fly ash to create an environmentally friendly and economical building material-desert sand dry-mixed mortar (DSDM). Through preliminary mix ratio experiments, five grades of DSDM were developed, and their durability in the saline soil regions of northwest China was studied. The study conducted macro-performance tests on the five strength grades of DSDM after sulfate dry-wet cycles (DWCs), analyzing changes in appearance, mass loss rate, compressive strength loss rate, and flexural strength loss rate. Using SEM, XRD, and NMR testing methods, the degradation mechanisms of the DSDM samples were analyzed. Results indicate that sulfate ions react with hydration products to form ettringite and gypsum, leading to sulfate crystallization. In the initial stages of DWCs, these erosion products fill the pores, increasing density and positively impacting the mortar's performance. However, as the number of cycles increases, excessive accumulation of erosion products leads to further expansion of pores and cracks within the DSDM, increasing the proportion of harmful and more harmful pores, degrading performance, and ultimately causing erosion damage to the mortar. Among the samples, DM5 exhibited the poorest erosion resistance, fracturing after 30 cycles with a mass loss of 43.57%. DM10 experienced failure after 60 cycles, with its compressive strength retention dropping to 78.86%. In contrast, DM15, DM20, and DM25 showed the best erosion resistance, with compressive strength retention above 75% after 120 cycles. Finally, the Wiener random probability distribution was used to predict the remaining life of DSDM samples under different degradation indicators, with flexural strength being the most sensitive indicator. Based on the flexural strength loss rate, the maximum sulfate DWCs for DM5, DM10, DM15, DM20, and DM25 were 132, 118, 78, 52, and 35 cycles, respectively. This study provides a theoretical basis for the promotion and use of DSDM in desert fringe areas.
This manuscript investigated the thermal stability, crystal reconstruction and microstructure evolution of graphite tailing cement mortar subjected to high temperature. Simultaneously, a computational model for heat transfer and degradation considering chemical transformations had been developed by combining multiscale mechanics with the laws of thermodynamics. The results show that 20% graphite tailings can increase the tobermorite crystal content under high temperature and inhibit its transformation into disordered form. Furthermore, the dormant active SiOx in graphite tailing is gradually activated under the action of high temperature, which catalyzes and induces the formation of more belite crystal in graphite tailing cement mortar. Additionally, 40% graphite tailing can promote the generation of anorthite by the induction of high temperature. Finally, a new multi-scale model considering the chemical transformation is established to calculate the hightemperature degradation process of graphite tailing cement mortar.
Polylactic acid/polybutylene adipate-co-terephthalate blend (PLA/PBAT) has been widely used due to their good biodegradation. Recently, the biodegradation of PLA and PBAT has received increasing attention. However, PLA/ PBAT blend-degrading strains have been rarely reported in comparison to that for pure PLA and PBAT. A fungus strain, Papiliotrema laurentii S2P4P, was isolated from agricultural soils and identified. S2P4P can efficiently degrade commercial PLA/PBAT films at 30 degrees C in mineral salt medium (MSM) and obtained about 14% of weight loss within 30 days of incubation. Additionally, rough and uneven surface of PLA/PBAT film with cracks and creases, increased hydrophilicity, changes in mechanical property, and decreased intensity of C=O and C-O bonds were observed after S2P4P treatments. The strain secreted esterase to catalyze the degradation of the ester bonds in PLA/PBAT blend, resulting in the production of degradation products such as butanediol, adipic acid, lactic acid and terephthalic acid as well as their oligomers. Furthermore, as carbon and energy sources, the degradation products could participate in the metabolism of S2P4P and then accelerate degradation of PLA/ PBAT blend. The advantages of P. laurentii S2P4P in simultaneous degradation of PLA and PBAT indicated that the strain has potential value for the bioremediation of PLA/PBAT blend in the actual environment.
The damage caused by petroleum hydrocarbon pollution to soil and groundwater environment is becoming increasingly significant. The vadose zone is the only way for petroleum hydrocarbon pollutants to leak from surface into groundwater. The spatial distribution characteristics of indigenous microorganisms in vadose zone, considering presence of capillary zones, have rarely been reported. To explore the spatial distribution characteristics of indigenous microorganisms in vadose zone contaminated by petroleum hydrocarbons, a onedimensional column migration experiment was conducted using n-hexadecane as characteristic pollutant. Soil samples were collected periodically from different heights during experiment. Corresponding environmental factors were monitored online. The microbial community structure and spatial distribution characteristics of the cumulative relative abundance were systematically analyzed using 16S rRNA sequencing. In addition, the microbial degradation mechanism of n-hexadecane was analyzed using metabolomics. The results showed that presence of capillary zone had a strong retarding effect on n-hexadecane infiltration. Leaked pollutants were mainly concentrated in areas with strong capillary action. Infiltration and displacement of NAPL-phase pollutants were major driving force for change in moisture content ( theta) and electric conductivity (EC) in vadose zone. The degradation by microorganisms results in a downward trend in potential of hydrogen (pH) and oxidation reduction potential (ORP). Five petroleum hydrocarbon -degrading bacterial phyla and 11 degradable straightchain alkane bacterial genera were detected. Microbial degradation was strong in the area near edge of capillary zone and locations of pollutant accumulation. Mainly Sphingomonas and Nocardioides bacteria were involved in microbial degradation of n-hexadecane. Single -end oxidation involved microbial degradation of n-hexadecane (C 16 H 34 ). The oxygen consumed, hexadecanoic acid (C 16 H 32 O 2 ) produced during this process, and release of hydrogen ions (H + ) were the driving factors for reduction of ORP and pH. The vadose zone in this study considered presence of capillary zone, which was more in line with actual contaminated site conditions compared with previous studies. This study systematically elucidated vertical distribution characteristics of petroleum hydrocarbon pollutants and spatiotemporal variation characteristics of indigenous microorganisms in vadose zone considered presence of capillary zone. In addition, the n-hexadecane degradation mechanism was elucidated using metabolomics. This study provides theoretical support for development of natural attenuation remediation measures for petroleum -hydrocarbon -contaminated soil and groundwater.
It is well known that the mechanical properties and appearance of adobe materials degrade significantly during freeze-thaw cycles due to the unique moisture absorption characteristics of soil particles. In order to clarify the performance degradation mechanism of adobe materials under freeze-thaw cycles, the evolution law of the pore structure, attack products, and capillary absorption characteristics were systematically studied when experiencing 10, 20, and 30 freeze-thaw cycles. The results showed that the flocculent hydration product around the Yellow River sediments and aggregate particles gradually reduced during adobe materials subjected to freezethaw cycles. Volume expansion caused by the growth of ettringite in macropores and cracks led to the deterioration in pore structure and more water participated in the subsequent freeze-thaw cycles. The porosity and pore volume of adobe materials increased with the increasing of freeze-thaw cycles, and the harmful pores of 50-200 nm rose significantly. After 20 freeze-thaw cycles, harmful pores accounted for 62.3% of the total pore volume of adobe materials, which induced an enlarged moisture transport capacity, and thus the capillary absorption coefficient increased by 18.52 g/(m2 & sdot;s1/2). As a combined result of above factors, after 30 freeze-thaw cycles, the loss rates in mass and compressive strength of adobe materials were 6.2% and 15.4%, respectively.
The widespread use of petroleum-based plastic mulch in agriculture has accelerated white and microplastic pollution while posing a severe agroecological challenge due to its difficulty in decomposing in the natural environment. However, endowing mulch film with degradability and growth cycle adaptation remains elusive due to the inherent non-degradability of petroleum-based plastics severely hindering its applications. This work reports polylactic acids hyperbranched composite mulch (PCP) and measured biodegradation behavior under burial soil, seawater, and ultraviolet (UV) aging to understand the biodegradation kinetics and to increase their sustainability in the agriculture field. Due to high interfacial interactions between polymer and nanofiler, the resultant PCP mulch significantly enhances crystallization ability, hydrophilicity, and mechanical properties. PCP mulch can be scalable-manufactured to exhibit modulated degradation performance under varying degradation conditions and periods while concurrently enhancing crop growth (wheat). Thus, such mulch with excellent performance can reduce labor costs and the environmental impact of waste mulch disposal to replace traditional mulch for sustainable agricultural production.