共检索到 2

Glaciers have proven to be a particularly sensitive indicator of climate change, and the impacts of glacier melting on downstream water supplies are becoming increasingly important as the world's population expands and global warming continues. Data scarcity in mountainous catchments, on the other hand, has been a substantial impediment to hydrological simulation. Therefore, an enhanced glacier hydrological model combined with multi-source remote sensing data was introduced in this study and was performed in the Upper Yarkant River (UYR) Basin. A simple yet efficient degree-day glacier melt algorithm considering solar radiation effects has been introduced for the Soil and Water Assessment Tool Plus model (SWAT+), sensitivity analysis and auto calibration/validation processes were integrated into this enhanced model as well. The results indicate that (i) including glacio-hydrological processes and multi-source remote sensing data considerably improved the simulation precision, with a Nash-Sutcliffe efficiency coefficient (NSE) promotion of 1.9 times and correlated coefficient (R-2) of 1.6 times greater than the original model; (ii) it is an efficient and feasible way to simulate glacio-hydrological processes with SWAT+Glacier and calibrate it using observed discharge data in data-scarce and glacier-melt-dominated catchments; and (iii) glacier runoff is intensively distributed throughout the summer season, accounting for about 78.5% of the annual glacier runoff, and glacier meltwater provides approximately 52.5% (4.4 x 10(9) m(3)) of total runoff in the study area. This research can serve the runoff simulation in glacierized regions and help in understanding the interactions between streamflow components and climate change on basin scale.

期刊论文 2022-01-01 DOI: http://dx.doi.org/10.3390/rs14236080

Glacier mass balance, the difference between accumulation and ablation at the glacier surface, is the direct reflection of the local climate regime. Under global warming, the simulation of glacier mass balance at the regional scale has attracted increasing interests. This study selects Urumqi Glacier No. 1 as the testbed for examining the transferability in space and time of two commonly used glacier mass balance simulation models: i.e., the Degree-Day Model (DDM) and the simplified Energy Balance Model (sEBM). Four experiments were carried out for assessing both models' temporal and spatial transferability. The results show that the spatial transferability of both the DDM and sEBM is strong, whereas the temporal transferability of the DDM is relatively weak. For all four experiments, the overall simulation effect of the sEBM is better than that of the DDM. At the Zone around Equilibrium Line Altitude (ELA), the DDM performed better than the sEBM. Also, the accuracy of parameters, including the lapse rate of air temperature and vertical gradient of precipitation at the glacier surface, is of great significance for improving the spatial transferability of both models.

期刊论文 2020-04-01 DOI: http://dx.doi.org/10.3724/SP.1.1226.2020.00095 ISSN: 1674-3822
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页