Mosquitoes around the world spread diseases like malaria, dengue, zika, lymphatic filariasis and arboviruses, which are dangerous to human health and the economy. Eventually, mosquitoes develop resistance to synthetic chemical insecticides and, moreover, these insecticides have adverse environmental impacts, accumulating in soils and in the food chain. So, researchers are searching for better vector control tools from biological sources such as plants, bacteria, fungi, viruses and other predators. Eco-friendly methods that use entomopathogenic fungi to reduce vector-borne disease burdens are becoming more popular because they are selective and safe for the environment. Based on existing literature, several microbial agents show potential for the biocontrol of mosquitoes. With advances in genetic recombination and transformation techniques, in the ongoing battle against insecticide-resistant mosquitoes, genetically engineered fungal biopesticides represent a cutting-edge solution. These biopesticides are the result of novel genetic changes that improve the ability of fungi to target and kill mosquitoes. These fungi can effectively combat mosquito populations by introducing genes that produce insecticidal proteins or toxins. This method has several advantages, including a lower environmental impact, because the fungi are highly specific to mosquitoes and are harmless to non-target organisms. It also helps to reduce the problem of insecticide resistance because the fungi have a unique mode of action. These biopesticides hold great promise for reducing mosquito-borne diseases while minimizing environmental damage and combating resistance. This review article discusses various entomopathogenic fungal pathogens that can act as biocontrol agents and their mode of action against mosquitoes. We discus recent advances in entomopathogenic fungi-secreted effector molecules for suppressing host immunity and progress in the development of transgenic mosquito-killing fungi.
Vector-borne diseases pose a significant public health challenge in economically disadvantaged nations. Malaria, dengue fever, chikungunya, Zika, yellow fever, Japanese encephalitis, and lymphatic filariasis are spread by mosquitoes. Consequently, the most effective method of preventing these diseases is to eliminate the mosquito population. Historically, the majority of control programs have depended on chemical pesticides, including organochlorines, organophosphates, carbamates, and pyrethroids. Synthetic insecticides used to eradicate pests have the potential to contaminate groundwater, surface water, beneficial soil organisms, and non-target species. Nanotechnology is an innovative technology that has the potential to be used in insect control with great precision. The goal of this study was to test the in vitro anti-dengue potential and mosquitocidal activity of Chaetomorpha aerea and C. aerea-synthesized Mn-doped superparamagnetic iron oxide nanoparticles (CA-Mn-SPIONs). The synthesis of CA-Mn-SPIONs using C. aerea extract was verified by the observable alteration in the colour of the reaction mixture, transitioning from a pale green colour to a brown. The study of UV-Vis spectra revealed absorbance peaks at approximately 290 nm, which can be attributed to the surface Plasmon resonance of the CA-Mn-SPIONs. The SEM, TEM, EDX, FTIR, vibrating sample magnetometry, and XRD analyses provided evidence that confirmed the presence of CA-Mn-SPIONs. In the present study, results revealed that C. aerea aqueous extract LC50 values against Ae. aegypti ranged from 222.942 (first instar larvae) to 349.877 ppm in bioassays (pupae). CA-Mn-SPIONs had LC50 ranging from 20.199 (first instar larvae) to 26.918 ppm (pupae). After treatment with 40 ppm CA-Mn-SPIONs and 500 ppm C. aerea extract in ovicidal tests, egg hatchability was lowered by 100%. Oviposition deterrence experiments showed that in Ae. aegypti, oviposition rates were lowered by more than 66% by 100 ppm of green algal extract and by more than 71% by 10 ppm of CA-Mn-SPIONs (oviposition activity index values were 0.50 and 0.55, respectively). Moreover, in vitro anti-dengue activity of CA-Mn-SPIONs has good anti-viral property against dengue viral cell lines. In addition, GC-MS analysis showed that 21 intriguing chemicals were discovered. Two significant phytoconstituents in the methanol extract of C. aerea include butanoic acid and palmitic acid. These two substances were examined using an in silico methodology against the NS5 methyltransferase protein and demonstrated good glide scores and binding affinities. Finally, we looked into the morphological damage and fluorescent emission of third instar Ae. aegypti larvae treated with CA-Mn-SPIONs. Fluorescent emission is consistent with ROS formation of CA-Mn-SPIONs against Ae. aegypti larvae. The present study determines that the key variables for the successful development of new insecticidal agents are rooted in the eco-compatibility and the provision of alternative tool for the pesticide manufacturing sector.