Deposition of ambient black carbon (BC) aerosols over snow-covered areas reduces surface albedo and accelerates snowmelt. Based on in-situ atmospheric BC data and the WRF-Chem model, we estimated the dry and wet deposition of BC over the Yala glacier of the central Himalayan region in Nepal during 2016-2018. The maximum and minimum BC dry deposition was reported in pre- and post-monsoon respectively. Approximately 50% of annual dry deposition occurred in the pre-monsoon season (March to May) and 27% of the annual dry deposition occurred in April. The total dry BC deposition rate was estimated as -4.6 mu g m- 2 day- 1 providing a total deposition of 531 mu g m- 2 during the pre-monsoon season. The contribution of biomass burning and fossil fuel sources to BC deposition on an annual basis was 28% and 72% respectively. The annual accumulated wet deposition of BC was 196 times higher than the annual dry deposition. The ten months of observed dry deposition of BC (October 1, 2016 to August 31, 2017 - except December 2016) was -39% lower than that of WRFChem's estimated annual dry deposition from September 1, 2016 to August 31, 2017 partially due to model bias. The deposited content of BC over the snow surface has an important role in albedo reduction, therefore snow samples were collected from the surface of the Yala Glacier and the surrounding region in April 2016, 2017, and 2018. Samples were analyzed for BC mass concentration through the thermal optical analysis and single particle soot photometer method. The BC calculated via the thermal optical method was in the range of 352-854 ng g- 1, higher than the BC calculated through the particle soot photometer method and estimated BC in 2 cm surface snow (imperial equation). The maximum surface snow albedo reduction due to BC was 8.8%, estimated by a widely used snow radiative transfer model and a linear regression equation.
The article is devoted to assessment of the anthropogenic influence in the Larsemann Hills, East Antarctica. The emission of the main pollutants and greenhouse gases from diesel generators used at Antarctic stations are estimated for the period since the beginning of the development of the oasis area (from 1986 to 2019). It is shown that SO 2 emissions decreased in 2019 compared to peak values in 1990 by 5.6 times, which was due to a significant decrease of the sulfur content in fuel. Emissions of other pollutants mostly increased. Surface air pollution by SO 2 , NO 2 , CO, PM 10 and black carbon (BC) using the AERMOD dispersion model are characterized. It is revealed that the most significant emission health impact is due to increase of surface concentrations of nitrogen dioxide. Deposition fluxes of PM 10 and BC are estimated. The fluxes of PM 10 and BC dry deposition in the territory of Larsemann Hills can reach maximum values of 27.5 and 21.7 mg/m 2 /year, respectively; can be traced in certain directions at a distance of up to 2.0 km or more. Modeling of BC deposition due to the dispersion of emission allowed to make draft estimates of soot concentration in the snow of the area and resulting radiative forcing climatic effects.
Lumbini isa world heritage site located in the southern plains region of Nepal, and is regarded as a potential site for evaluating transboundary air pollution due to its proximity to the border with India. In this study, 82 aerosol samples were collected between April 2013 and July 2014 to investigate the levels of particulate-bound mercury (PBM) and the corresponding seasonality, sources, and influencing factors. The PBM concentration in total suspended particulate (TSP) matter ranged from 6.8 pg m-3 to 351.7 pg m-3 (mean of 99.7 +/- 92.6 pg m-3), which exceeded the ranges reported for remote and rural sites worldwide. The Hg content (PBM/TSP) ranged from 68.2 ng g-1 to 1744.8 ng g-1 (mean of 446.9 +/- 312.7 ng g-1), indicating anthropogenic enrichment. The PBM levels were higher in the dry season (i.e., winter and the pre-monsoon period) than in the wet season (i.e., the monsoon period). In addition, the d202Hg signature indicated that waste/coal burning and traffic were the major sources of Hg in Lumbini during the pre-monsoon period. Meanwhile, precipitation occurring during photochemical processes in the atmosphere may have been responsible for the observed D199Hg values in the aerosol samples obtained during the monsoon period. The PBM concentration was influenced mostly by the resuspension of polluted dust during dry periods and crop residue burning during the post-monsoon period. The estimated PBM deposition flux at Lumbini was 15.7 lg m-2 yr-1. This study provides a reference dataset of atmospheric PBM over a year, which can be useful for understanding the geochemical cycling of Hg in this region of limited data. (c) 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
Robust estimates of historical changes in aerosols are key for accurate constraints on climate sensitivity. Dry deposition is a primary sink of aerosols from the atmosphere. However, most global climate models do not accurately represent observed strong dependencies of dry deposition following turbulent transport on aerosol size. It is unclear whether there is a substantial impact of mischaracterized aerosol deposition velocities on historical aerosol changes. Here we describe improved mechanistic representation of aerosol dry deposition in the NASA Goddard Institute for Space Studies (GISS) global climate model, ModelE, and illustrate the impact on 1850-2000 changes in global aerosol burdens as well as aerosol direct and cloud albedo effects using a set of 1850 and 2000 time slice simulations. We employ two aerosol configurations of ModelE (a bulk mass-based configuration and a configuration that more explicitly represents aerosol size distributions, internal mixing, and microphysics) to explore how model structural differences in aerosol representation alter the response to representation of dry deposition. Both configurations show larger historical increases in the global burdens of non-dust aerosols with the new dry deposition scheme, by 11% in the simpler mass-based configuration and 23% in the more complex microphysical configuration. Historical radiative forcing responses, which vary in magnitude from 5% to 12% as well as sign, depend on the aerosol configuration. Numerical models representing the Earth system are important tools for understanding the drivers of climate change and variability. Particles (also known as aerosols) in the atmosphere can influence climate by scattering or absorbing solar radiation and influencing clouds. How the amount of particles in the atmosphere has changed since preindustrial times is very uncertain. Many processes impact particle spatial distributions and changes with time, as well as how particles influence climate. Sources and sinks of particles need to be represented well in order to have confidence in estimates of changes in particles. Here we more accurately simulate dry deposition, which is a sink of particles, in a numerical model that represents the Earth system, and examine impacts on changes in the amount of particles in the atmosphere from preindustrial times to present day and the particles' influence on climate. ModelE now has process-based representation of aerosol dry deposition, and captures strong observed dependencies on particle size Increases from 1850 to 2000 in the global non-dust aerosol annual burdens are 11%-23% larger with more mechanistic dry deposition Historical radiative forcing responses (-12% to +6%) depend on aerosol representation (e.g., microphysics and mixing state)
Phosphorus (P) is an essential macronutrient for all organisms that can be redistributed between terrestrial and oceanic systems via atmospheric emission, transport, transformation, and deposition. Moreover, since natural P mobilization from the lithosphere to ecosystems is a relatively slow process, the role of atmospheric P seems to play an important role in its cycling. This paper provides a comprehensive review of the analytical methods used for characterizing atmospheric P species and the methods used for identifying P sources (e.g., oxygen stable isotope compositions of phosphate, & delta;18OP) discussing their respective suitability, advantages, and limitations. While at a regional scale & delta;18OP of atmospheric P are generally source-specific, at a more global scale these isotope compositions tend to overlap between sources, rendering their tracer potential more difficult. Further-more, various sources of atmospheric P and their fluxes are compiled, and the potential uncertainties in the estimates of their respective contributions are reviewed, which suggest that more model inter-comparations, parameter optimizations, and field observations are still needed. Moreover, we summarize the long-range transport process controlling P atmospheric dispersion at various scales (focusing on dust and biomass burning). In addition, the transformation mechanism, especially acid dissolution, that modifies the P cycle during its residence time in the atmosphere is depicted. Finally, we propose that land cover may be a potential key control to the atmospheric P deposition rate based on the critical analysis of previously published rates. This review allows us to ultimately propose key recommendations for fostering future research on P geochemical cycling.
Heavy metals, one of the most toxic classes of pollutants, are resistant to degradation and harmful to the biological environment. The lakes that have developed on the Tibetan Plateau are ideal regions to investigate historic heavy metal pollution, particularly through the use of the reliable(210)Pb dating technique. Environmental magnetism has been successfully applied to estimate heavy metal pollution in different environmental systems due to its characteristics of simple processing steps, good sensitivity, and non-destructibility. However, it has not yet been applied to assess heavy metal pollution in lake sediments on the Tibetan Plateau. A series of environmental magnetic investigations of Qiangyong Co Lake sediments (southern Tibetan Plateau) was therefore conducted to explore the relationship between magnetic minerals and mercury (Hg) concentrations. The results showed that the magnetic mineral species in lake sediments remained stable, with similar levels of four different components from 1899 to 2011. However, the proportion of component 1 (C1, hematite) increased continuously with the corresponding decrease in the proportion of C2 (goethite), while the proportions of C3 and C4 (magnetite) did not change significantly. As a result, the bulk magnetic signals (e.g., SIRM and chi(lf)) were unsuitable for the evaluation of the Hg concentration; however, the proportion of hematite had a strong positive correlation with the Hg concentration. It is possible that the Qiangyong Glacier (the main water supply for Qiangyong Co Lake) has experienced faster melting with global and local warming, and the Hg trapped in cryoconite and ice was released. Hematite, with a large specific surface area, has a strong capacity for absorbing Hg, and both materials are ultimately transported to Qiangyong Co Lake. The proportion of hematite in a sample is therefore a suitable semi-quantitative proxy that can be used to evaluate the Hg concentration in Qiangyong Co Lake sediments. This study confirmed that the variation of magnetic minerals can provide a new method to estimate the variation of Hg concentrations and to study the process of Hg deposition in lakes in the southern Tibetan Plateau on the basis of a detailed environmental magnetic analysis.
As an important component of carbonaceous matters, dissolved organic carbon (DOC) can absorb and scatter the solar radiation at ultraviolet and blue wavelengths. The wet deposition process has great impact on the concentration and light absorption ability of precipitation DOC, affecting the climatic effect caused by DOC in the atmosphere. In this study, light absorption and fluorescence characteristics of precipitation DOC was investigated in the central Tibetan Plateau (TP). The results showed that the mean DOC concentration and mass absorption cross- measured at 365 nm (MAC365) in Tanggula (TGL) station were 0.59 +/- 0.42 mg/L and 0.37 +/- 0.19 m2/g, respectively, while both values showed much higher volatilities than those of aerosols. DOC concentrations had significant negative correlation with the precipitation amount, while MAC365 values increase with the precipitation amount in TGL station. Therefore, DOC with high light-absorbing ability was preferred to be retained in the atmosphere during wet deposition. In this study, precipitation DOC contained three fluorescent components (one humic-like component and two tyrosine-like components) mainly from local biomass burning sources. DOC concentration showed a negative relationship with MAC365 value in TGL station. The wet deposition of DOC with low light-absorbing ability can reduce the strong negative radiative forcing caused by secondary organic aerosol due to high proportion of DOC in secondary organic carbon. Similar phenomenon was also found in Nam Co, Lulang and Everest stations of previous study, which may have a potential impact on radiative forcing in the atmosphere of TP.
Carbonaceous matter (CM) (such as water-insoluble organic carbon (WIOC), black carbon (BC), and water-soluble organic carbon (WSOC)) has a significant impact on the carbon cycle and radiative forcing (RF) of glacier. Precipitation samples and glacier's snow/ice samples (snowpit, surface snow, and granular ice) (Xiao dongkemadi Glacier) were collected at the Dongkemadi River Basin (DRB) in the central Tibetan Plateau (TP) between May and October 2016 to investigate the characteristics and roles of CM in the TP River Basin. WIOC, BC, and WSOC concentrations in precipitation were relatively higher than that in snowpit, but lower than that in surface snow/ice, with the wet deposition fluxes of 0.10 +/- 0.002, 0.04 +/- 0.001, and 0.12 +/- 0.002 g C m(-2) yr(-1) at DRB, respectively. The positive matrix factorization model identified four major sources (biomass burning source, secondary precursors, secondary aerosol, and dust source) of CM in precipitation at DRB. Two source areas (South Asia and the interior of TP) contributing to the pollution at DRB were identified using a potential source contribution function model, a concentration-weighted trajectory method, and the back-trajectory model. Moreover, the light-absorption by WSOC in the ultraviolet region was 23.0%, 12.1%, and 3.4% relative to the estimated total light-absorption in precipitation, snowpit, and surface snow/ice, respectively. Optical indices analysis revealed that WSOC in snowpit samples presented higher molecular weight, while presented higher aromatic and higher molecule sizes in surface snow/ice and precipitation samples, respectively. RF by WSOC relative to that of BC was estimated to be 17.6 +/- 17.6% for precipitation, 10.9 +/- 5.8% for snowpit, and 10.7 +/- 11.6% for surface snow/ice, respectively, during the melt season in the central TP River Basin. These results help us understand how CM affects glaciers, and they can be utilized to create policies and recommendations that efficiently reduce emissions.
Soot deposition from wildfires decreases snow and ice albedo and increases the absorption of shortwave radiation, which advances and accelerates melt. Soot deposition also induces algal growth, which further decreases snow and ice albedo. In recent years, increasingly severe and widespread wildfire activity has occurred in western Canada in association with climate change. In the summers of 2017 and 2018, westerly winds transported smoke from extensive record-breaking wildfires in British Columbia eastward to the Canadian Rockies, where substantial amounts of soot were deposited on high mountain glaciers, snowfields, and icefields. Several studies have addressed the problem of soot deposition on snow and ice, but the spatiotemporal resolution applied has not been compatible with studying mountain icefields that are extensive but contain substantial internal variability and have dynamical albedos. This study evaluates spatial patterns in the albedo decrease and net shortwave radiation (K*) increase caused by soot from intense wildfires in Western Canada deposited on the Columbia Icefield (151 km(2)), Canadian Rockies, during 2017 and 2018. Twelve Sentinel-2 images were used to generate high spatial resolution albedo retrievals during four summers (2017 to 2020) using a MODIS bidirectional reflectance distribution function (BRDF) model, which was employed to model the snow and ice reflectance anisotropy. Remote sensing estimates were evaluated using site-measured albedo on the icefield's Athabasca Glacier tongue, resulting in a R-2, mean bias, and root mean square error (RMSE) of 0.68, 0.019, and 0.026, respectively. The biggest inter-annual spatially averaged soot-induced albedo declines were of 0.148 and 0.050 (2018 to 2020) for southeast-facing glaciers and the snow plateau, respectively. The highest inter-annual spatially-averaged soot-induced shortwave radiative forcing was 203 W/m(2) for southeast-facing glaciers (2018 to 2020) and 106 W/m(2) for the snow plateau (2017 to 2020). These findings indicate that snow albedo responded rapidly to and recovered rapidly from soot deposition. However, ice albedo remained low the year after fire, and this was likely related to a bio-albedo feedback involving microorganisms. Snow and ice K* were highest during low albedo years, especially for south-facing glaciers. These large-scale effects accelerated melt of the Columbia Icefield. The findings highlight the importance of using large-area high spatial resolution albedo estimates to analyze the effect of wildfire soot deposition on snow and ice albedo and K* on icefields, which is not possible using other approaches.
South Asian pollutants can be transported and deposited via wet/dry deposition to the remote areas of the Himalayas and could pose a serious threat to the mountain ecosystems. Therefore, in order to understand the concentrations, fluxes, seasonal variation and origin of the mercury (Hg), major ions and trace elements, precipitation samples were collected during 2012-2013 from a data gap region, Jomsom, the high elevation semiarid mountain valley in the central Himalayas. The volume-weighted mean (VWM) concentrations of ions followed the order of Ca2+ > Mg2+ > Na+ > NH4+ > SO42- > Cl- > NO3- > K+. The concentration of Cd was lowest (0.07 mu g L-1) whereas that of Fe was the highest (1073.59 mu g L-1) in the precipitation samples. Wet deposition level of all the measured inorganic species was comparable to urban Lhasa but higher than those in remote alpine sites of the Tibetan Plateau (TP). This study shows that Hg and other inorganic constituents were higher in the non-monsoon season compared to monsoon due to enhanced washout of aerosols. Enrichment factor (EF), sea salt fraction, crustal and anthropogenic fractions, principal component analysis (PCA) and correlation coefficient analysis suggested that crustal dust and anthropogenic activities as the major sources of measured chemical species whereas the influence of sea-salt was minimal. In addition, local anthropogenic emissions were low suggesting that the majority of the pollutants could have been transported from the South Asian region to the high elevation mountains. Meanwhile, low precipitation and dry environment could have enhanced the concentrations of inorganic species in the arid region than other sites over the central Himalayas. This work adds new dataset of inorganic pollutants in wet precipitation and provides baseline information for an arid region environmental protection. However, there is a need for further long-term monitoring to understand the precipitation chemistry of the arid regions.