共检索到 2

Tillage operation aims to create a favorable environment for seed germination of agricultural crop production practices. Physio-mechanical properties of soil directly affecting soil behaviors and determinants in initial conditions affecting soil failure. An absence in understanding how soil physio-mechanical properties affect agrotechnical operations at different tillage depths, especially in study area, and lacks insights into their associations and practical implications for optimizing tillage and soil health. This study presents an experimental investigation of the physio-mechanical properties of agricultural soil in Bukito Kebele, Loka Abaya woreda of Sidama Regional state, Ethiopia. The objective was to identify these properties under varying agro-technical soil depth conditions. Randomized Complete Block Design (RCBD) field experimental design was spotted to take soil samples using appropriate sample equipment and further lab analysis was conducted. Loka Abaya farm soil is loam, offering balanced texture for drainage, water retention, and nutrient availability. Moisture content reaches a maximum of 24.36%, with a linear relationship between soil depth and moisture content. The Atterberg limits of the soil (LL: 37.5-40%, PL: 25-27.5%, PI: 10-15%) indicate low plasticity and low clay content, consistent with loamy or silty soils. The results also show that soil cohesion is low in the topsoil (surface layers) but increases significantly at depths of 10-15 cm. Soil resistance decreases with depth due to reduced compaction and increased pore space in subsurface layers. Bulk density peaks at 1.28 g/cm3 at 10 cm depth due to high organic matter decomposition, then decreases to 1.20 g/cm3 at 15-20 cm, likely from reduced organic matter and root activity in subsurface layers. Correlations analysis reveals that soil moisture strongly increases with depth (r = 0.99, p < 0.01), indicating that deeper tillage may be necessary in arid regions to access moist soil layers. Sandy soils, which show a strong link between plastic limit and sand percentage (r = 0.97, p < 0.01), require adequate moisture during tillage to prevent erosion. Moist, cohesive soils are less compacted (r = - 0.92, p < 0.05) and easier to till, while cohesive soils resist penetration (r = - 0.90, p < 0.05), highlighting the need for efficient tillage equipment to minimize energy use. Overall, soil moisture, texture, and cohesion are critical factors for optimizing tillage practices and enhancing soil health. The study's site-specific nature limits its broader applicability, its focus on physical properties few mechanical property, overviews chemical and biological aspects, and further research is required to understand the long-term impacts of tillage on soil structure and productivity.

期刊论文 2025-06-06 DOI: 10.1038/s41598-025-03130-4 ISSN: 2045-2322

To reveal the dynamic mechanical characteristics of deep rocks, a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted. The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks. The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth, indicating that producing penetrative cracks in deep environments is more difficult when damage occurs. The dynamic strength shows a tendency to decrease and then increase slightly, but decreases sharply finally. Transmissivity demonstrates a similar trend as that of strength, whereas reflectivity indicates the opposite trend. Furthermore, two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory (CJPL) were proposed for deep engineering. The first critical depth is 600-900 m, beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease, causing instability of surrounding rocks under axial stress condition. The second one lies at 1500-1800 m, where the wave impedance and dynamic strength of deep surrounding rocks drop sharply, and the dissipation energy presents a negative value. It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types, depending on the second critical depth. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

期刊论文 2024-02-01 DOI: 10.1016/j.jrmge.2023.08.005 ISSN: 1674-7755
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页