共检索到 2

Most natural soils exhibit a certain degree of soil structure which, in general, leads to increased strength and stiffness properties. However, the mechanical characterization of these soils based on conventional laboratory testing proves difficult in many cases due to sample disturbance. The present work aims to characterize the microstructure of a postglacial, normally consolidated, fine-grained deposit in Seekirchen, Austria, adopting in situ testing, laboratory testing on high-quality samples, and numerical analysis. The latter involves recalculating in situ piezocone penetration tests (CPTu) using an advanced constitutive model for structured soil. In contrast to existing in situ interpretation methods, the results of the numerical study, the mineralogical and hydrochemical testing, as well as the oedometer and bender element testing on undisturbed and reconstituted samples suggest that the soil is characterized by a significant amount of structure. It is demonstrated that the difference in shear wave velocity measured in situ and through bender element testing on reconstituted samples can be used as an indicator for soil structure. Ignoring the effects of structure may lead to inaccurate parameter determination for advanced constitutive models, which are subsequently employed to solve complex boundary value problems in geotechnical practice. As a consequence, the prediction of expected displacement may not be reliable.

期刊论文 2025-05-01 DOI: 10.1061/JGGEFK.GTENG-11985 ISSN: 1090-0241

This paper presents a novel analytical framework to predict short-term pile setup in natural structure clay, considering the influence of soil destructuration in installation and consolidation. Based on the cavity expansion method, a simulation of pile installation has been conducted, with an analytical solution formulated for cavity expansion under undrained conditions to capture soil destructuration effectively. The flow rate in the unit cell is determined by Darcy's law based on the soil mass volume change, leading to the consolidation equation, which is obtained in a fully analytical form for excess pore water pressure (EPWP) dissipation. The utilization of the average compression curve aimed to depict a partially disturbed state due to the effects of installation. Based on the rewritten effective stress method (beta method), which involves the time-dependent factor while properly incorporating the effects of relaxation and thixotropy by introducing the requisite parameters. Finally, the analytical framework for predicting short-term pile setup is established and validated through a comprehensive pile field test conducted at St-Alban. The close correspondence between the analytical results and the empirical data indicates the effectiveness of the proposed framework in forecasting short-term pile behaviour with reasonable accuracy.

期刊论文 2025-02-15 DOI: 10.1016/j.oceaneng.2024.120132 ISSN: 0029-8018
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页