Soil tensile strength is a critical parameter governing the initiation and propagation of tensile cracking. This study proposes an eco-friendly approach to improve the tensile behavior and crack resistance of clayey soils. To validate the feasibility and efficacy of the proposed approach, direct tensile tests were employed to determine the tensile strength of the compacted soil with different W-OH treatment concentrations and water contents. Desiccation tests were also performed to evaluate the effectiveness of W-OH treatment in enhancing soil tensile cracking resistance. During this period, the effects of W-OH treatment concentration and water content on tensile properties, soil suction and microstructure were investigated. The tensile tests reveal that W-OH treatment has a significant impact on the tensile strength and failure mode of the soil, which not only effectively enhances the tensile strength and failure displacement, but also changes the brittle failure behavior into a more ductile quasi-brittle failure behavior. The suction measurements and mercury intrusion porosimetry (MIP) tests show that W-OH treatment can slightly reduce soil suction by affecting skeleton structure and increasing macropores. Combined with the microstructural analysis, it becomes evident that the significant improvement in soil tensile behavior through W-OH treatment is mainly attributed to the W-OH gel's ability to provide additional binding force for bridging and encapsulating the soil particles. Moreover, desiccation tests demonstrate that W-OH treatment can significantly reduce or even inhibit the formation of soil tensile cracking. With the increase of W-OH treatment concentration, the surface crack ratio and total crack length are significantly reduced. This study enhances a fundamental understanding of eco-polymer impacts on soil mechanical properties and provides valuable insight into their potential application for improving soil crack resistance. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures, such as concrete gravity dams. Despite the critical importance of the failure mechanism and tensile strength of rock-concrete interfaces, understanding of these factors remains very limited. This study investigated the tensile strength and fracturing processes at rock-mortar interfaces subjected to direct and indirect tensile loadings. Digital image correlation (DIC) and acoustic emission (AE) techniques were used to monitor the failure mechanisms of specimens subjected to direct tension and indirect loading (Brazilian tests). The results indicated that the direct tensile strength of the rockmortar specimens was lower than their indirect tensile strength, with a direct/indirect tensile strength ratio of 65%. DIC strain field data and moment tensor inversions (MTI) of AE events indicated that a significant number of shear microcracks occurred in the specimens subjected to the Brazilian test. The presence of these shear microcracks, which require more energy to break, resulted in a higher tensile strength during the Brazilian tests. In contrast, microcracks were predominantly tensile in specimens subjected to direct tension, leading to a lower tensile strength. Spatiotemporal monitoring of the cracking processes in the rock-mortar interfaces revealed that they show AE precursors before failure under the Brazilian test, whereas they show a minimal number of AE events before failure under direct tension. Due to different microcracking mechanisms, specimens tested under Brazilian tests showed lower roughness with flatter fracture surfaces than those tested under direct tension with jagged and rough fracture surfaces. The results of this study shed light on better understanding the micromechanics of damage in the rock-concrete interfaces for a safer design of engineering structures. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).