共检索到 2

The Land Surface Temperature (LST) is well suited to monitor biosphere-atmosphere interactions in forests, as it depends on water availability and atmospheric/meteorological conditions above and below the canopy. Satellite-based LST has proven integral in observing evapotranspiration, estimating surface heat fluxes and characterising vegetation properties. Since the radiative regime of forests is complex, driven by canopy structure, components radiation properties and their arrangement, forest radiative temperatures are subject to strong angular effects. However, this depends on the scale of observation, where scattering mechanisms from canopy-to satellite-scales influence anisotropy with varying orders of magnitude. Given the heterogeneous and complex nature of forests, multi-angular data collection is particularly difficult, necessitating instrumentation distant enough from the canopy to obtain significant canopy brightness temperature and concurrent observations to exclude turbulence/atmospheric effects. Accordingly, current research and understanding on forest anisotropy at varying scales (from local validation level to satellite footprint) remain insufficient to provide practical solutions for addressing angular effects for upcoming thermal satellite sensors and associated validation schemes. This study presents a novel method founded in the optical remote sensing domain to explore the use of microcanopies that represent forests at different scales in the footprint of a multi-angular goniometer observing system. Both Geometric Optical (GO) and volumetric scattering dominated canopies are constructed to simulate impacts of anisotropy in heterogeneous and homogeneous canopies, and observed using a thermal infrared radiometer. Results show that heterogeneous canopies dominated by GO scattering are subject to much higher magnitudes of anisotropy, reaching maximum temperature differences of 3 degrees C off-nadir. Magnitudes of anisotropy are higher in sparse forests, where the gap fraction and crown arrangement (inducing sunlit/shaded portions of soil and vegetation) drive larger off-nadir differences. In dense forests, anisotropy is driven by viewing the maximum portion of sunlit vegetation (hotspot), where the soil is mostly obscured. Canopy structural metrics such as the fractional cover and gap fraction were found to have significant correlation with off-nadir differences. In more homogeneous canopies, anisotropy reaches a lower magnitude with temperature differences up to 1 degrees C, driven largely by volumetric scattering and components radiation properties. Optimal placement of instrumentation at the canopy-scale (more heterogeneous behaviour due to proximity to the canopy and small pixel size) used to validate satellite observations (more homogeneous behaviour due to larger pixel size) was found to be in cases of viewing maximum sunlit vegetation, for dense canopies. Given upcoming high spatial resolution sensors and associated validation schemes needed to benchmark LST and downstream products such as evapotranspiration, a better understanding of anisotropy over forests is critical to provide accurate, long-term and multi-sensor products.

期刊论文 2025-08-15 DOI: 10.1016/j.rse.2025.114766 ISSN: 0034-4257

Multi-span reinforced concrete (RC) curved box-girder bridges are commonly designed to facilitate traffic flow at highway interchanges. The Aksemsettin Viaduct (henceforth, A Viaduct for brevity) in Istanbul, Turkey, is an eleven-span interchange bridge with a total length of 596.8 m. Located in a high seismicity zone, the A Viaduct is designed with a curved deck, multiple bearings that have different isolation mechanisms at different bents and directions, ten rectangular columns with unequal heights, and a mix of pile foundations and spread footings. The significant length of the viaduct crossed by eleven spans also makes it susceptible to varying ground motion excitations at different foundations. To evaluate the effects of the degree of modeling detail and analysis complexity on the estimated seismic performance, the present study conducts a comprehensive fragility assessment of the specimen viaduct under various ground motion excitation schemes. First, a three-dimensional finite element model is developed with detailed simulations for the deck, columns, bearings, foundations, and abutment components. To enable different ground motion excitations at each foundation, 57 sets of spatially varying ground motions are simulated by considering the realistic surface topography and soil stratigraphy at the bridge site. Cyclic pushover analyses are performed along multiple loading directions to develop the directiondependent capacity limit state models for hollow rectangular columns. Subsequently, a demand-capacity ratio method is utilized to develop reliable fragility models for bridge columns. Component- and system-level fragilities of the A Viaduct are then assessed under uniform versus multi-support excitations, vertical motions, and ground motions with varying incidence angles. To further capture the seismic damage discrepancies of the same components at different locations, seismic repair cost ratios of the A Viaduct are assessed when subjected to uniform and multi-support excitations. This study highlights the significance of considering multi-support excitations to achieve more realistic seismic fragility and loss estimates for multi-span long curved highway bridges.

期刊论文 2024-05-01 DOI: 10.1016/j.soildyn.2024.108585 ISSN: 0267-7261
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页