Soil organic carbon (SOC) rapidly accumulates during ecosystem primary succession in glacier foreland. This makes it an ideal model for studying soil carbon sequestration and stabilization, which are urgently needed to mitigate climate change. Here, we investigated SOC dynamics in the Kuoqionggangri glacier foreland on the Tibetan Plateau. The study area along a deglaciation chronosequence of 170-year comprising three ecosystem succession stages, including barren ground, herb steppe, and legume steppe. We quantified amino sugars, lignin phenols, and relative expression of genes associated with carbon degradation to assess the contributions of microbial and plant residues to SOC, and used FT-ICR mass spectroscopy to analyze the composition of dissolved organic matter. We found that herbal plant colonization increased SOC by enhancing ecosystem gross primary productivity, while subsequent legumes development decreased SOC, due to increased ecosystem respiration from labile organic carbon inputs. Plant residues were a greater contributor to SOC than microbial residues in the vegetated soils, but they were susceptible to microbial degradation compared to the more persistent and continuously accumulating microbial residues. Our findings revealed the organic carbon accumulation and stabilization process in early soil development, which provides mechanism insights into carbon sequestration during ecosystem restoration under climate change.
Recent studies have revealed the abundance of dissolved organic matter (DOM) in snow/glaciers of the Tibetan Plateau (TP). Here, we present a comprehensive study on the chemical compositions of snowpit samples collected from widely distributed eight glaciers in the western China (six from the TP) to investigate the spatial variation of deposited atmospheric aerosols. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to chemically characterize the DOM in snow samples which can offer chemical properties of DOM. Highest mass concentration of dissolved species mass was observed in Tienshan Baishui No 1 glacier (TS, 6.55 +/- 0.85 mg/L) close to Takalamagan Desert, whereas lowest (0.89 +/- 0.18 mg/L) was observed in Zadang Glacier (ZD) in the central TP. DOM (8-40%) and calcium as well as magnesium (9-67%) were generally the most abundant chemical species. Average DOM concentration in the TP glaciers among the investigated sites were comparable. DOM was found highly oxidized with an oxygen to carbon ratio (O/C ratio) ranging from 0.82 to 1.03. Highly oxidized DOM could have related with aerosol aqueous processes as illustrated by observed organic acids. This study provides insights into the spatial variations of the DOM and dissolved inorganic matter, as well as oxidized organic aerosol, were most likely due to local and regional contribution. (C) 2019 Elsevier B.V. All rights reserved.