共检索到 13

Ice-wedge polygon landscapes make up a substantial part of high-latitude permafrost landscapes. The hydrological conditions shape how these landscapes store and release organic carbon. However, their coupled water-carbon dynamics are poorly understood as field measurements are sparse in smaller catchments and coupled hydrology-dissolved organic carbon (DOC) models are not tailored for these landscapes. Here we present a model that simulates the hydrology and associated DOC export of high-centered and low-centered ice-wedge polygons and apply the model to a small catchment with abundant polygon coverage along the Yukon Coast, Canada. The modeled seasonal pattern of water and carbon fluxes aligns with sparse field data. These modeled seasonal patterns indicate that early-season runoff is mostly surficial and generated by low-centered polygons and snow trapped in troughs of high-centered polygons. High-centered polygons show potential for deeper subsurface flow under future climate conditions. This suggests that high-centered polygons will be responsible for an increasing proportion of annual DOC export compared to low-centered polygons. Warming likely shifts low-centered polygons to high-centered polygons, and our model shows that this shift will cause a deepening of the active layer and a lengthening of the thawing season. This, in turn, intensifies seasonal runoff and DOC flux, mainly through its duration. Our model provides a physical hypothesis that can be used to further quantify and refine our understanding of hydrology and DOC export of arctic ice-wedge polygon terrain.

期刊论文 2024-04-10 DOI: 10.1016/j.scitotenv.2024.170931 ISSN: 0048-9697

Dissolved organic carbon (DOC) makes an important contribution to glacier melting in the Himalayas and the Tibetan Plateau (HTP). Photobleaching can effectively reduce the light absorption ability of DOC, further changing its impact on glacier melting, which is not yet well researched in the HiP. Therefore, snowpit samples from the Bayi, Ganglongjiama (GLJM), Jiemayangong (JMYZ) and Demula (DML) glaciers were collected to study the influence of photobleaching on the light absorption ability of DOC and its impact on glacier melting. The results showed that the DOC concentration of snowpit samples, which was affected by the melting state and photobleaching, decreased from the northern HTP to the southern HIP. At an early stage of melting, the mass absorption cross- value at 365 nm (MAC 365 ) values showed a negative correlation with DOC concentrations in the snowpit at the JMYZ and DML glaciers, indicating that colored DOC tended to be concentrated in the snowpit during the melting process. With the aggravation of ablation, some snowpit samples in the GLJM and Bayi glaciers had both low concentrations and MAC 365 values of DOC due to the reduced influence of photobleaching on the light absorption ability of DOC. Similarly, two fluorescence components (one protein-like component and one hurnic-like component) were identified in the extracted DOC at the JMYZ and DML glaciers, while those components were not detected in the GLJM glacier. Based on the sources of fluorescent DOC and five-day backward air mass trajectories, long-distance transport of pollutants from South Asia was an important source of snowpit DOC in the southern HIP. In this study, photobleaching can effectively remove colored and fluorescent DOC from snowpit samples in the HIP, further reducing the radiation forcing and glacier melting caused by DOC. (C) 2021 Elsevier B.V. All rights reserved.

期刊论文 2021-11-25 DOI: http://dx.doi.org/10.1016/j.scitotenv.2021.149178 ISSN: 0048-9697

The mobilization and land-to-ocean transfer of dissolved organic carbon (DOC) in Arctic watersheds is intricately linked with the region's climate and water cycle, and furthermore at risk of changes from climate warming and associated impacts. This study quantifies model-simulated estimates of runoff, surface and active layer leachate DOC concentrations and loadings to western Arctic rivers, specifically for basins that drain into coastal waters between and including the Yukon and Mackenzie Rivers. Model validation leverages data from other field measurements, synthesis studies, and modeling efforts. The simulations effectively quantify DOC leaching in surface and subsurface runoff and broadly capture the seasonal cycle in DOC concentration and mass loadings reported from other studies that use river-based measurements. A marked east-west gradient in simulated spring and summer DOC concentrations of 24 drainage basins on the North Slope of Alaska is captured by the modeling, consistent with independent data derived from river sampling. Simulated loadings for the Mackenzie and Yukon show reasonable agreement with estimates of DOC export for annual totals and four of the six seasonal comparisons. Nearly equivalent loading occurs to rivers which drain north to the Beaufort Sea and west to the Bering and Chukchi Seas. The modeling framework provides a basis for understanding carbon export to coastal waters and for assessing impacts of hydrological cycle intensification and permafrost thaw with ongoing warming in the Arctic.

期刊论文 2021-10-01 DOI: 10.1029/2021JG006420 ISSN: 2169-8953

Manifestations of climate change in the Arctic are numerous and include hydrological cycle intensification and permafrost thaw, both expected as a result of atmospheric and surface warming. Across the terrestrial Arctic dissolved organic carbon (DOC) entrained in arctic rivers may be providing a carbon subsidy to coastal food webs. Yet, data from field sampling is too often of limited duration to confidently ascertain impacts of climate change on freshwater and DOC flows to coastal waters. This study applies numerical modeling to investigate trends in freshwater and DOC exports from land to Elson Lagoon in Northwest Alaska over the period 1981-2020. While the modeling approach has limitations, the results point to significant increases in freshwater and DOC exports to the lagoon over the past four decades. The model simulation reveals significant increases in surface, subsurface (suprapermafrost), and total freshwater exports. Significant increases are also noted in surface and subsurface DOC production and export, influenced by warming soils and associated active-layer thickening. The largest changes in subsurface components are noted in September, which has experienced a similar to 50% increase in DOC export emanating from suprapermafrost flow. Direct coastal suprapermafrost freshwater and DOC exports in late summer more than doubled between the first and last five years of the simulation period, with a large anomaly in September 2019 representing a more than fourfold increase over September direct coastal export during the early 1980s. These trends highlight the need for dedicated measurement programs that will enable improved understanding of climate change impacts on coastal zone processes in this data sparse region of Northwest Alaska.

期刊论文 2021-10-01 DOI: 10.1088/1748-9326/ac2288 ISSN: 1748-9326

Our understanding of water-soluble organic constituents and their transformation in the unique aqueous continuum over cryosphere region is scarce. Here, dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved total nitrogen (DTN) and water-soluble inorganic ions in multiple water bodies from the eastern Tibetan Plateau (TP) cryosphere are systematically determined from a suite of field campaigns, laboratory experiments, linear regression analysis, and multiple comparisons, etc. We found that the water bodies located at high elevation have much lower DOC contents compared to the samples at lower elevation, there has significant altitude dependence of DOC abundance in water bodies over the study area (elevation range: 1971-4700 m asl). Comparison of optical properties, source apportionment, chemical analysis and model simulation of the water bodies provide evidence that the atmospheric deposition of organic species in high mountains is transported to plateau lakes in the northeast of TP via alpine runoff (45%) and snow/ice meltwater (20%). Further, dominance of anthropogenic activities in lower elevations can contribute (35%) to the observed altitudinal dependency. Thus, this preliminary study represents the first systematic investigation of the transport and cycling of organic carbonaceous matter and nitrogenous matter in eastern TP and warrants more robust in-situ observations and measurements in future in High Mountains of Asia.

期刊论文 2021-03-01 DOI: http://dx.doi.org/10.1016/j.catena.2022.106372 ISSN: 0341-8162

Permafrost thaw in Arctic watersheds threatens to mobilize hitherto sequestered carbon. We examine the radiocarbon activity ((FC)-C-14) of dissolved organic carbon (DOC) in the northern Mackenzie River basin. From 2003-2017, DOC-(FC)-C-14 signatures (1.00 0.04; n = 39) tracked atmospheric (CO2)-C-14, indicating export of modern carbon. This trend was interrupted in June 2018 by the widespread release of aged DOC (0.85 0.16, n = 28) measured across three separate catchment areas. Increased nitrate concentrations in June 2018 lead us to attribute this pulse of C-14-depleted DOC to mobilization of previously frozen soil organic matter. We propose export through lateral perennial thaw zones that occurred at the base of the active layer weakened by preceding warm summer and winter seasons. Although we are not yet able to ascertain the broader significance of this anomalous mobilization event, it highlights the potential for rapid and large-scale release of aged carbon from permafrost. Plain Language Summary The thaw of continuously frozen grounds in the Arctic induced by regional warming accelerates the release of carbon to the atmosphere and river systems. Of particular concern is the fate of dissolved organic carbon (DOC) due to its potential for rapid oxidation to carbon dioxide. In order to understand the ramifications of a warming climate, we analyze the radiocarbon age of DOC in the northern Mackenzie River-a major Arctic river basin. DOC in large Arctic rivers has been characterized by young radiocarbon ages, from modern vegetation and surface soils. In June 2018, we recorded a departure from long-term observations: Older DOC was measured in three large catchments draining into the Mackenzie Delta. This release of aged DOC followed a warm summer and the second warmest winter on record. We infer that the aged DOC derived from thaw of deeper soil horizons and subsequent carbon mobilization and riverine export. This is the first time such an event has been documented; it highlights the potential for abrupt and widespread aged DOC export with important implications for regional and global carbon cycles. Key Points A widespread pulse of aged dissolved organic carbon (DOC) occurred in the Mackenzie River and its tributaries in June 2018 Export of aged DOC is consistent with a prolonged warming period and the formation of supra-permafrost taliks Mobilization of aged DOC and nitrate suggests percolation of supra-permafrost groundwater through previously frozen soil layers

期刊论文 2020-11-28 DOI: 10.1029/2020GL088823 ISSN: 0094-8276

Glacier melting represents an important flux of carbon and nitrogen (N) and affects the hydrological cycle. In this study, we presented the features of dissolved organic carbon (DOC) and N concentrations, their potential sources and export from the Muz Taw glacier in Central Asia. The average DOC and total dissolved nitrogen concentrations were 1.12 +/- 1.66 and 0.62 +/- 0.59 mg L-1 in surface snow and 0.21 +/- 0.04 and 0.31 +/- 0.10 mg L-1 in snowpit samples, respectively. The values from snowpit of the Muz Taw glacier were comparable to data reported from glaciers in the Tibetan Plateau but were considerably higher than those from polar regions. The C/N ratios in snow ranged from 0.7 to 11.7, indicating the high bioavailability of DOC. Mass absorption cross of DOC at 365 nm in snow indicated that during the snow melting process, light-absorbing DOC was prone to be attached to particles, especially in the ablation zone of the Muz Tawglacier. Radiative forcing caused by DOC contributed approximately 38 +/- 26% and 18 +/- 9.8% of that caused by black carbon for surface snow and snowpit samples, respectively. DOC and N deposition on the glacier surface were influenced by the combined sources from anthropogenic input, wild biomass burning emission, and dust input from local regions and long range transport. Export of DOC and N from the Muz Taw glacier was estimated to be 3.47-18.5 t C yr(-1) and 5.11-10.23 t N yr(-1) respectively, based on their concentrations and current glacier mass balance. These results enhanced our understanding of the sources and cycle of DOC and N released from glaciers in Central Asia, where glacier meltwater can protect the population from drought stress. (C) 2020 Elsevier B.V. All rights reserved.

期刊论文 2020-07-10 DOI: 10.1016/j.scitotenv.2020.138346 ISSN: 0048-9697

Increased permafrost thaw due to climate change in northern high-latitudes has prompted concern over impacts on soil and stream biogeochemistry that affect the fate of dissolved organic carbon (DOC). Few studies to-date have examined the link between molecular composition and biolability of dissolved organic matter (DOM) mobilized from different soil horizons despite its importance in understanding carbon turnover in aquatic systems. Additionally, the effect of mixed DOM sources on microbial metabolism (e.g., priming) is not well understood. No studies to-date have addressed potential priming effects in northern high-latitude or permafrost-influenced aquatic ecosystems, yet these ecosystems may be hot spots of priming where biolabile, ancient permafrost DOC mixes with relatively stable, modern stream DOC. To assess biodegradability and priming of DOC in permafrost-influenced streams, we conducted 28 day bioincubation experiments utilizing a suite of stream samples and leachates of fresh vegetation and different soil horizons, including permafrost, from Interior Alaska. The molecular composition of unamended DOM samples at initial and final time points was determined by ultrahigh resolution mass spectrometry. Initial molecular composition was correlated to DOC biodegradability, particularly the contribution of energy-rich aliphatic compounds, and stream microbial communities utilized 50-56% of aliphatics in permafrost-derived DOM within 28 days. Biodegradability of DOC followed a continuum from relatively stable stream DOC to relatively biolabile DOC derived from permafrost, active layer organic soil, and vegetation leachates. Microbial utilization of DOC was similar to 3-11% for stream bioincubations and ranged from 9% (active layer mineral soil-derived) to 66% (vegetation-derived) for leachate bioincubations. To investigate the presence or absence of a priming effect, bioincubation experiments included treatments amended with 1% relative carbon concentrations of simple, biolabile organic carbon substrates (i.e., primers). The amount of DOC consumed in primed treatments was not significantly different from the control in any of the bioincubation experiments after 28 days, making it apparent that the addition of biolabile permafrost-derived DOC to aquatic ecosystems will likely not enhance the biodegradation of relatively modern, stable DOC sources. Thus, future projections of carbon turnover in northern high-latitude region streams may not have to account for a priming effect.

期刊论文 2019-10-24 DOI: 10.3389/feart.2019.00275

Permafrost (perennially frozen) soils store vast amounts of organic carbon (C) and nitrogen (N) that are vulnerable to mobilization as dissolved organic carbon (DOC) and dissolved organic and inorganic nitrogen (DON, DIN) upon thaw. Such releases will affect the biogeochemistry of permafrost regions, yet little is known about the chemical composition and source variability of active-layer (seasonally frozen) and permafrost soil DOC, DON and DIN. We quantified DOC, total dissolved N (TDN), DON, and DIN leachate yields from deep active-layer and near-surface boreal Holocene permafrost soils in interior Alaska varying in soil C and N content and radiocarbon age to determine potential release upon thaw. Soil cores were collected at three sites distributed across the Alaska boreal region in late winter, cut in 15 cm thick sections, and deep active-layer and shallow permafrost sections were thawed and leached. Leachates were analyzed for DOC, TDN, nitrate (NO3-), and ammonium (NH4+) concentrations, dissolved organic matter optical properties, and DOC biodegradability. Soils were analyzed for C, N, and radiocarbon (C-14) content. Soil DOC, TDN, DON, and DIN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. These relationships were significantly different for active-layer and permafrost soils such that for a given soil C or N content, or radiocarbon age, permafrost soils releasedmore DOC and TDN (mostly as DON) per gram soil than active-layer soils. Permafrost soil DOC biodegradability was significantly correlated with soil Delta C-14 and DOM optical properties. Our results demonstrate that near-surface Holocene permafrost soils preserve greater relative potential DOC and TDN yields than overlying seasonally frozen soils that are exposed to annual leaching and decomposition. While many factors control the fate of DOC and TDN, the greater relative yields from newly thawed Holocene permafrost soils will have the largest potential impact in areas dominated by organic-rich soils.

期刊论文 2018-06-01 DOI: 10.1088/1748-9326/aac4ad ISSN: 1748-9326

Geomorphic disturbances to surrounding terrain induced by thermal degradation of permafrost often lead to surface ponding or soil saturation. However, interactions between soil moisture and temperature on belowground carbon processes are not fully understood. We conducted batch incubation for three temperature treatments [constant freezing (CF), constant thawing (CT), and fluctuating temperatures (FTC)] and two soil moisture conditions (ponded and unsaturated). Extracellular enzyme activity was higher under ponded conditions than under unsaturated conditions, resulting in higher dissolved organic carbon (DOC) levels for ponded conditions. More CO2 and less CH4 were emitted under unsaturated conditions than under ponded conditions. Carbon dioxide emission was similar for CT and FTC treatments regardless of moisture conditions. However, CH4 emission was higher under ponded conditions than under unsaturated conditions for CT treatments, but was very low for FTC treatments regardless of moisture conditions. Little CO2 and CH4 were produced in CF treatments. Despite similar CO2 and CH4 emission levels for CT and FTC treatments, lower DOC levels were observed in the latter, indicating slower soil organic carbon (SOC) decomposition. Similar DOC variation patterns between CT and CF treatments indicated that SOC decomposition was considerable and further degradation to CO2 or CH4 was negligible even for CF treatments. The SOC decomposition and CO2 and CH4 emissions were considerable for FTC treatments. Our results suggest that labile-C produced during SOC decomposition in seasonally frozen soils and permafrost may provide supplemental substrates that would enhance the positive feedback to climate change with rising temperatures and wetter conditions.

期刊论文 2018-02-01 DOI: 10.1007/s12303-017-0052-2 ISSN: 1226-4806
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共13条,2页