共检索到 74

With the global climate change, glaciers on the Qinghai-Tibet Plateau (QTP) and its adjacent mountainous regions are retreating rapidly, leading to an increase in active rock glaciers (ARGs) in front of glaciers. As crucial components of water resources in alpine regions and indicators of permafrost boundaries, ARGs reflect climatic and environmental changes on the QTP and its adjacent mountainous regions. However, the extensive scale of rock glacier development poses a challenge to field investigations and sampling, and manual visual interpretation requires substantial effort. Consequently, research on rock glacier cataloging and distribution characteristics across the entire area is scarce. This study statistically analyzed the geometric characteristics of ARGs using high- resolution GF-2 satellite images. It examined their spatial distribution and relationship with local factors. The findings reveal that 34,717 ARGs, covering an area of approximately 6873.54 km2, with an average area of 0.19 +/- 0.24 km2, a maximum of 0.0012 km2, and a minimum of 4.6086 km2, were identified primarily in north-facing areas at elevations of 4300-5300 m and slopes of 9 degrees-25 degrees, predominantly in the Karakoram Mountains and the Himalayas. Notably, the largest concentration of ARGs was found on north-facing shady slopes, constituting about 42 % of the total amount, due to less solar radiation and lower near-surface temperatures favorable for interstitial ice preservation. This research enriches the foundational data on ARG distribution across the QTP and its adjacent mountainous regions, offering significant insights into the response mechanisms of rock glacier evolution to environmental changes and their environmental and engineering impacts.

期刊论文 2024-12-15 DOI: http://dx.doi.org/10.1016/j.geomorph.2024.109468 ISSN: 0169-555X

Carbonaceous particles have been confirmed as major components of ambient aerosols in urban environments and are related to climate impacts and environmental and health effects. In this study, we collected different-size particulate matter (PM) samples (PM1, PM2.5, and PM10) at an urban site in Lanzhou, northwest China, during three discontinuous one-month periods (January, April, and July) of 2019. We measured the concentrations and potential transport pathways of carbonaceous aerosols in PM1, PM2.5, and PM10 size fractions. The average concentrations of OC (organic carbon) and EC (elemental carbon) in PM1, PM2.5, and PM10 were 6.98 +/- 3.71 and 2.11 +/- 1.34 mu g/m(3), 8.6 +/- 5.09 and 2.55 +/- 1.44 mu g/m(3), and 11.6 +/- 5.72 and 4.01 +/- 1.72 mu g/m(3). The OC and EC concentrations in PM1, PM2.5, and PM10 had similar seasonal trends, with higher values in winter due to the favorable meteorology for accumulating pollutants and urban-increased emissions from heating. Precipitation played a key role in scavenge pollutants, resulting in lower OC and EC concentrations in summer. The OC/EC ratios and principal component analysis (PCA) showed that the dominant pollution sources of carbon components in the PMs in Lanzhou were biomass burning, coal combustion, and diesel and gasoline vehicle emissions; and the backward trajectory and concentration weight trajectory (CWT) analysis further suggested that the primary pollution source of EC in Lanzhou was local fossil fuel combustion.

期刊论文 2024-08-01 DOI: http://dx.doi.org/10.3390/atmos11121368

Aerosol single-scattering albedo (SSA) is the most critical factor for the accurately calculating of aerosol radiative effects, however, the observation of vertical profiles of SSA is difficult to realize. Current assessments of aerosol radiative effects remain uncertain because of the lack of long-term, high-resolution vertical profiles of SSA observations. High-resolution SSA vertical profiles were observed in a semi-arid region of Northwest China during winter using a tethered balloon. The observed SSA vertical profiles were used to calculate the aerosol direct radiative forcing and radiative heating rates. Significant differences in the calculated radiative forcing were found (e.g., a 48.3% relative difference for the heating effect in the atmosphere at 14:00) between the observed SSA profiles and the constant assumption with SSA = 0.90. Diurnal variations in the vertical distribution of SSA decisively influenced direct radiative forcing of aerosols. Furthermore, high-resolution vertical profiles of absorbing aerosols and meteorological parameters provide robust observational evidence of the heating effect of an elevated absorbing aerosol layer. This study provides a more accurate calculation of aerosol radiative forcing using observed aerosol SSA profiles. The scarcity of single-scattering albedo (SSA) observations is the most critical factor limiting the accurate calculations of aerosol radiative effects. A tethered balloon platform was used to obtain long-term, high-resolution observations of the SSA and estimate aerosols' radiative effects. The relative differences in the heating rate and direct radiative forcing calculations using the observed SSA and a constant assumed SSA (i.e., ignoring the vertical distribution of absorbing aerosols) were quantified. The effects of diurnal variations in the vertical distribution of SSA on aerosol direct radiative forcing are summarized. This study has important scientific implications for assessing the radiative effects of aerosols in semi-arid regions, that are highly sensitive to climate change. Tethered balloon observations acquired high-resolution vertical aerosol single-scattering albedo (SSA) profiles The assumed SSA profiles caused a 48.3% relative error in radiative forcing in the atmosphere compared to the observed profiles at 14:00 A robust observational evidence of atmospheric heating by absorbing aerosols above the boundary layer was provided

期刊论文 2024-07-28 DOI: 10.1029/2023JD040605 ISSN: 2169-897X

The more insects there are, the more food there is for insectivores and the higher the likelihood for insect-associated ecosystem services. Yet, we lack insights into the drivers of insect biomass over space and seasons, for both tropical and temperate zones. We used 245 Malaise traps, managed by 191 volunteers and park guards, to characterize year-round flying insect biomass in a temperate (Sweden) and a tropical (Madagascar) country. Surprisingly, we found that local insect biomass was similar across zones. In Sweden, local insect biomass increased with accumulated heat and varied across habitats, while biomass in Madagascar was unrelated to the environmental predictors measured. Drivers behind seasonality partly converged: In both countries, the seasonality of insect biomass differed between warmer and colder sites, and wetter and drier sites. In Sweden, short-term deviations from expected season-specific biomass were explained by week-to-week fluctuations in accumulated heat, rainfall and soil moisture, whereas in Madagascar, weeks with higher soil moisture had higher insect biomass. Overall, our study identifies key drivers of the seasonal distribution of flying insect biomass in a temperate and a tropical climate. This knowledge is key to understanding the spatial and seasonal availability of insects-as well as predicting future scenarios of insect biomass change.

期刊论文 2024-06-19 DOI: 10.1098/rspb.2024.0090 ISSN: 0962-8452

Charge distribution measurements are required to understand the spatiotemporal distribution of the number concentrations of submicron atmospheric particles that affect radiative forcing and particle deposition in human airways. The number concentrations of non -charged and charged particles within the 0.3-0.5 pm diameter (D) range were measured at Keio University in Yokohama, Japan, from June 2022 to January 2023 by combining a parallel -pate particle separator and optical particle counters to investigate critical parameters controlling the charging state of submicron atmospheric particles. The measurement uncertainties in the average charge number per particle (pave) and the standard deviation (1 sigma), derived from the charge distribution of the submicron particles, were within 15%. The monthly median values of 1 sigma increased in summer and decreased in winter and correlated with the water vapor amount and wind speed. The 1 sigma values in summer and winter, derived from the seasonally averaged charge distributions of particles, were close to those from the theoretically calculated charge distribution of particles within 0.387-0.5 pm D range and with D = 0.3 pm, respectively, suggesting that the observed particle charge distributions approached the stationary charge distribution for the effective D. In summer, the frequent transport of water molecules and ions from the Pacific Ocean causes efficient collisions between multiple ions and submicron particles with a larger effective D, which may expand the charge distribution of particles. The polarity ratio, the concentration of positively charged particles relative to that of negatively charged particles, was almost unity, indicating the well-balanced charge polarity of the submicron atmospheric particles. The polarity ratio and pave changed significantly during lightning events, indicating that the atmospheric particle charge balance broke. Our findings show that the charge distribution of submicron atmospheric particles can be partly controlled by meteorological parameters (e.g., absolute humidity) and the microphysical properties of the particles.

期刊论文 2024-05-01 DOI: 10.1016/j.atmosenv.2024.120421 ISSN: 1352-2310

In this study, in situ observations were conducted for six criteria air pollutants (PM2.5, PM10, SO2, NO2, CO, and O-3) at 23 sites in western China for 1 year. Subsequently, the detailed Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) results for the pollutants were determined. The WRF-Chem model provided a clear perspective on the spatiotemporal distribution of air pollutants. High pollutant concentrations were mainly observed over highly populated mega-city regions, such as Sichuan and Guanzhong basins, whereas low concentration levels were observed over the Tibetan Plateau (TP). The TP also showed an increased concentration of O-3. Seasonally, all six pollutants except O-3 exhibited high concentration values during winter and low values during summer. O-3 concentrations exhibited an opposite seasonal variation in low-altitude regions. Unlike other pollutants that exhibited gradually decreasing concentrations with an increase in altitude, O-3 concentrations revealed an increasing trend. Furthermore, NO2 concentrations gradually increased in the upper atmosphere possibly due to lighting and stratospheric transmission. Atmospheric pollution is closely related to emissions and meteorological variations in western China. Meteorological conditions in the summer are conducive to pollutant dispersion and wet scavenging; however, unfavourable weather conditions (high pressure as well as a low planetary boundary layer height and precipitation level) in the winter can further worsen air pollution. Atmospheric pollutants from various emission sectors generally exhibited varying monthly profiles. In six typical cities, pollutants were positively correlated with multiple emission sources except for industrial emissions. Further sensitivity simulations indicated that eliminating residential emissions resulted in the largest decrease (up to 70%) in PM2.5 and PM10 concentrations. The most significant reductions in the concentrations of SO2 and NO2 were achieved by eliminating industrial and transportation emissions, respectively. The outcomes of this study could be helpful for future studies on pollution formation mechanisms as well as environmental and health risk assessments in western China. (C) 2019 Elsevier Ltd. All rights reserved.

期刊论文 2024-03-01 DOI: http://dx.doi.org/10.1016/j.chemosphere.2019.125767 ISSN: 0045-6535

Permafrost degradation on the Tibetan Plateau (TP) will significantly affect local water cycle processes, downstream water ecology, and water security. In this study, we evaluate the long-term interannual dynamics of permafrost distribution and active layer thickness (ALT) on the TP based on historical data from Climatic Research Unit gridded Time Series (CRU TS) downscaling and projected data under four shared socio-economic pathways (SSPs) in Scenario Model Intercomparison Project (ScenarioMIP) of the Coupled Model Intercomparison Project Phase 6 (CMIP 6). To achieve this, we employ a data-driven scheme at 1 km resolution for both historical and future periods (1901-2100) that compares the performance of four machine learning algorithms to select the optimal algorithm for permafrost distribution and ALT simulations. Our results indicate that the permafrost on the TP has been undergoing degradation in both historical and future periods, with a decrease in permafrost area and an increase in ALT. The changing rates of permafrost area and regionally averaged ALT during the historical period (1901-2020) are -1.05 x 104 km2 decade-1 and 0.012 m decade-1, while an accelerated degradation is observed after the 1970 s (with changing rates of permafrost area and regionally average ALT of -3.62 x 104 km2 decade-1 and 0.055 m decade-1). Our results also suggested that permafrost degradation on the TP will continue in the future under the four SSP scenarios. The individual global climate models (GCMs) exhibit a consistent degradation trend but great uncertainty in degradation speed. The ensemble mean of simulations across 15 selected GCMs showed that the degradation percentage of permafrost area on the TP under scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 was 26.0 +/- 6.8 %, 50.4 +/- 5.6 %, 79.2 +/- 4.5 %, and 89.0 +/- 4.0 % by 2100, and the regionally average ALT increased by 0.301 +/- 0.112 m, 0.628 +/- 0.113 m, 1.204 +/- 0.119 m, and 1.486 +/- 0.125 m, respectively. We also analyze permafrost stability and elevationdependent changes of ALT on the TP. The permafrost stability increases with elevation and latitude, and ALT changes more intensely with increasing elevation. This study will provide valuable data for hydrological and ecological studies related to permafrost on the TP.

期刊论文 2024-01-01 DOI: 10.1016/j.jhydrol.2023.130501 ISSN: 0022-1694

Aerosols are liquid and solid particles suspended in the atmosphere and have a broad size range; they can cool the Earth by scattering radiation back to space or warm the Earth by absorbing radiation directly. Since the industrial revolution, the loading of aerosols in the Earth's atmosphere has increased significantly, yielding modifications to the Earth's energy budget and further affecting the climate state. Aerosol direct radiative forcing (ADRF), defined as the difference in radiation with and without total or specific aerosols, is an important concept used to describe the direct impact of aerosols on radiation. Accurate quantification of ADRF is the premise for understanding and predicting the Earth's climate state. To improve the estimation and evaluation of ADRF, numerous researchers have dedicated their efforts to developing a series of observations and models in recent decades. However, due to the limited availability of wide spatial and high-precision observations of aerosol optical characteristics, as well as an insufficient model description of aerosol properties and physical and chemical processes, the ADRF uncertainty is still high. This paper first reviews the spatio-temporal distribution of aerosol optical depth (AOD), single scattering albedo (SSA) and corresponding ADRF by using observations and models. The aerosol optical properties and ADRF show distinct discrepancies among various regions due to the impact of anthropogenic emissions and meteorological and climate conditions. In regions with rapid economic development, such as India, AOD demonstrates a long-term increasing trend with higher average values. However, regions influenced by environmental protection policies, such as North America and Europe, show a long-term decreasing trend in AOD, accompanied by lower average values. Based on site observations, most of Europe, North America, Africa, and Asia exhibit a significant long-term increasing trend in SSA. However, in seasons with biomass burning or dust outbreaks, specific regions, such as southern and southwestern China in late autumn and early spring, and northern and northwestern China in spring, exhibit a reduction in SSA. In the future, with the global and regional emissions of aerosols and precursors declining, ADRF is expected to weaken, highlighting the warming effect of greenhouse gases. However, the ADRF trend is closely linked to the present development level and trajectory of each region. Second, we systematically summarize the impacts of the influential factors on the ADRF, considering the AOD, SSA, surface albedo (SA), solar zenith angle (SZA), asymmetry factor (ASY), relative altitude between aerosols and clouds, and relative altitude between different types of aerosols. Subsequently, we proceed to review the sensitivities of ADRF to different influential factors, as well as the contributions of these factors to the overall uncertainty of ADRF, which indicate that ADRF is more sensitive to AOD and SSA while SSA emerges as the most significant source of uncertainty in ADRF due to the larger errors associated with its measurement. It should be noted that the uncertainty caused by SA and ASY cannot be ignored in polluted regions. Finally, from the perspective of observations and models, a brief outlook on improving the accuracy of ADRF evaluation is provided. In the future, advanced observation technologies, such as multi-angle, hyperspectral, polarized remote sensing observations, and precise in-situ measurements, should be developed to obtain more accurate information about the aerosols and environment. Furthermore, we need to properly combine various observations and models, including Earth system models, to improve the simulation of aerosols and their precursors. With improved understanding of aerosol-radiation interactions and refining techniques in observations and model simulations, the evaluation of ADRF will be more accurate.

期刊论文 2024-01-01 DOI: 10.1360/TB-2023-0375 ISSN: 0023-074X

According to the monitoring data of the optical and microphysical characteristics of smoke aerosol at AERONET stations during forest fires in the summer of 2019 in Alaska, the anomalous selective absorption of smoke aerosol has been detected in the visible and near-infrared spectral range from 440 to 1020 nm. With anomalous selective absorption, the imaginary part of the refractive index of smoke aerosol reached 0.315 at a wavelength of 1020 nm. A power-law approximation of the spectral dependence of the imaginary part of the refractive index with an exponent from 0.26 to 2.35 is proposed. It is shown that, for anomalous selective absorption, power-law approximations of the spectral dependences of the aerosol optical extinction and absorption depths are applicable with an angstrom ngstrom exponent from 0.96 to 1.65 for the aerosol optical extinction depth and from 0.97 to -0.89 for the aerosol optical absorption depth, which reached 0.72. Single scattering albedo varied from 0.62 to 0.96. In the size distribution of smoke aerosol particles with anomalous selective absorption, the fine fraction of particles of condensation origin dominated. The similarity of the fraction of particles distinguished by anomalous selective absorption with the fraction of tar balls (TBs) detected by electron microscopy in smoke aerosol, which, apparently, arise during the condensation of terpenes and their oxygen-containing derivatives, is noted.

期刊论文 2023-12-01 DOI: 10.1134/S000143382306004X ISSN: 0001-4338

The NCAR Community Earth System Model is used to study the influences of anthropogenic aerosols on the Indian summer monsoon (ISM). We perform two sets of 30-year simulations subject to the prescribed perpetual SST annual cycle. One is triggered by the year 2000 climatology anthropogenic aerosol emissions data over the Indian Peninsula (referred to as AERO), and the other one is by the year 1850 (referred to as CTL). Only aerosol direct effects are included in the experiments. In our results, the transition of ISM in AERO relative to the CTL exhibits a similar ensemble-mean onset date with a larger spread, and more abrupt onset in late spring, and an earlier but more gradual withdrawal in early fall. The aerosols-induced circulation changes feature an upward motion over the northeastern Indian Peninsula and strengthened anticyclonic circulation over the Arabia Sea in the pre-monsoon season, and a northward shift of monsoon flow in the developed monsoon period along with strengthened local meridional circulation over northern India. The strengthened anticyclonic circulation over Arabia Sea caused a 16% increase in natural dust transport from the Middle East in the pre-monsoon season. The elevated aerosol heating over Tibet causes stronger ascending motion in the pre-monsoon period that leads to earlier and more abrupt ISM onset. The earlier monsoon withdrawal is attributed to the aerosol-induced anticyclonic flow within 10 & DEG;-25 & DEG;N and cyclonic flow within 0 & DEG;-10 & DEG;N over eastern India and Bay of Bengal that resemble the ISM seasonal transition in September.

期刊论文 2023-12-01 DOI: 10.1007/s44195-023-00041-7 ISSN: 1017-0839
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 末页
  • 跳转
当前展示1-10条  共74条,8页