Suprapermafrost groundwater fulfils an important role in the hydrological cycle of the permafrost region. Under the influence of the soil freeze-thaw process in the active layer, the dynamic process of suprapermafrost groundwater is too complex to be fully quantified, which has limited our understanding of the features of groundwater dynamic processes in permafrost regions. To bridge this gap, the dynamic characteristics of the suprapermafrost groundwater level were systematically observed, and pumping tests were performed under different topographic conditions (e.g., altitude, slope orientation, and distance from the river). The results showed that the differences in the heat distribution and recharge source of groundwater at the different altitudes and slope orientations determined the phase and threshold of the variation in the suprapermafrost groundwater movement state. There was a significant Boltzmann function relationship between the groundwater level and soil temperature. The groundwater level in the downslope during melting increased earlier and that during freezing declined later than that in the upslope part during the initial thawing cycle and the initial freezing cycle, respectively. The groundwater level on the shady slope decreased twice as fast as that on the sunny slope at the initial freezing stage. There was a favourable exponential relationship between the hydraulic conductivity (K) and soil temperature in the study area. On the sunny slope, K was higher than that on the shady slope, and K was higher in the area near the river than in the area far from the river. When the melting depth of the active layer reached 2/3 of the maximum depth, K reached its maximum value. The study results also revealed that when the soil temperature was reduced to 1-0 degrees C, a strong linear relationship occurred between K and soil temperature.
Under the continuing influence of global warming, resolving the inconsistency of permafrost degradation rates and quantifying the spatial distribution characteristics are critical for high-altitude water cycle processes. The dynamics of permafrost degradation are mainly manifested in soil temperature, which can be measured with high accuracy and high temporal resolution. This study considered the influence of soil thermal conductivity (K) by periodic land surface temperature (LST), improved the static output of the temperature at the top of permafrost (TTOP) model, and verified the reliability of the TTOP model improvement by the Kappa coefficient. The results showed that from 2000 to 2020, the extent of dynamically simulated permafrost was 5.42 x 10(5) km(2) less than that of static simulated permafrost, and the linear degradation rate doubled. The degraded permafrost showed an increasing degradation from southeast to northwest. Among them, the degradation in the Nujiang River and the Changjiang River north of the Nyainqentanglha Mountain has exacerbated the permafrost degradation in the hinterland of the Qiangtang Plateau. Based on the AWI-CM-1-1-MR LST from CMIP6, SSP126 to SSP585 dynamic simulation results of permafrost indicate that the extent will decrease by 11.35 % by 2100. Overall, the extent and rate of permafrost degradation, considering high spatiotemporal resolution, were twice as fast as expected. Our results will inform policymakers with a more accurate spatiotemporal distribution of frozen soil types in high-altitude regions and characteristics of permafrost degradation within the watershed.