共检索到 2

Permafrost stability is significantly influenced by the thermal buffering effects of snow and active-layer peat soils. In the warm season, peat soils act as a barrier to downward heat transfer mainly due to their low thermal conductivity. In the cold season, the snowpack serves as a thermal insulator, retarding the release of heat from the soil to the atmosphere. Currently, many global land models overestimate permafrost soil temperature and active layer thickness (ALT), partially due to inaccurate representations of soil organic matter (SOM) density profiles and snow thermal insulation. In this study, we evaluated the impacts of SOM and snow schemes on ALT simulations at pan-Arctic permafrost sites using the Energy Exascale Earth System Model (E3SM) land model (ELM). We conducted simulations at the Circumpolar Active Layer Monitoring (CALM) sites across the pan-Arctic domain. We improved ELM-simulated site-level ALT using a knowledge-based hierarchical optimization procedure and examined the effects of precipitation-phase partitioning methods (PPMs), snow compaction schemes, and snow thermal conductivity schemes on simulated snow depth, soil temperature, ALT, and CO2 fluxes. Results showed that the optimized ELM significantly improved agreement with observed ALT (e.g. RMSE decreased from 0.83 m to 0.15 m). Our sensitivity analysis revealed that snow-related schemes significantly impact simulated snow thermal insulation levels, soil temperature, and ALT. For example, one of the commonly used snow thermal conductivity schemes (quadratic Sturm or SturmQua) generally produced warmer soil temperatures and larger ALT compared to the other two tested schemes. The SturmQua scheme also amplified the model's sensitivity to PPMs and predicted deeper ALTs than the other two snow schemes under both current and future climates. The study highlights the importance of accurately representing snow-related processes and peat soils in land models to enhance permafrost dynamics simulations.

期刊论文 2024-05-01 DOI: 10.1088/1748-9326/ad38ce ISSN: 1748-9326

The new Energy Exascale Earth System Model Version 1 (E3SMv1) developed for the U.S. Department of Energy has significant new treatments of aerosols and light-absorbing snow impurities as well as their interactions with clouds and radiation. This study describes seven sets of new aerosol-related treatments (involving emissions, new particle formation, aerosol transport, wet scavenging and resuspension, and snow radiative transfer) and examines how they affect global aerosols and radiative forcing in E3SMv1. Altogether, they give a reduced total aerosol radiative forcing (-1.6 W/m(2)) and sensitivity in cloud liquid water to aerosols, but an increased sensitivity in cloud droplet size to aerosols. A new approach for H2SO4 production and loss largely reduces a low bias in small particles concentrations and leads to substantial increases in cloud condensation nuclei concentrations and cloud radiative cooling. Emitting secondary organic aerosol precursor gases from elevated sources increases the column burden of secondary organic aerosol, contributing substantially to global clear-sky aerosol radiative cooling (-0.15 out of -0.5 W/m(2)). A new treatment of aerosol resuspension from evaporating precipitation, developed to remedy two shortcomings of the original treatment, produces a modest reduction in aerosols and cloud droplets; its impact depends strongly on the model physics and is much stronger in E3SM Version 0. New treatments of the mixing state and optical properties of snow impurities and snow grains introduce a positive present-day shortwave radiative forcing (0.26 W/m(2)), but changes in aerosol transport and wet removal processes also affect the concentration and radiative forcing of light-absorbing impurities in snow/ice. Plain Language Summary Aerosol and aerosol-cloud interactions continue to be a major uncertainty in Earth system models, impeding their ability to reproduce the observed historical warming and to project changes in global climate and water cycle. The U.S. DOE Energy Exascale Earth System Model version 1 (E3SMv1), a state-of-the-science Earth system model, was developed to use exascale computing to address the grand challenge of actionable predictions of variability and change in the Earth system critical to the energy sector. It has been publicly released with new treatments in many aspects, including substantial modifications to the physical treatments of aerosols in the atmosphere and light-absorbing impurities in snow/ice, aimed at reducing some known biases or correcting model deficiencies in representing aerosols, their life cycle, and their impacts in various components of the Earth system. Compared to its predecessors (without the new treatments) and observations, E3SMv1 shows improvements in characterizing global distributions of aerosols and their radiative effects. We conduct sensitivity experiments to understand the impact of individual changes and provide guidance for future development of E3SM and other Earth system models.

期刊论文 2020-01-01 DOI: 10.1029/2019MS001851
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页