Permafrost is undergoing rapid changes due to climate warming, potentially exposing a vast reservoir of carbon to be released to the atmosphere, causing a positive feedback cycle. Despite the importance of this feedback, its specifics remain poorly constrained, because representing permafrost dynamics still poses a significant challenge for Earth System Models (ESMs). This review assesses the current state of permafrost representation in land surface models (LSMs) used in ESMs and offline permafrost models, highlighting both the progress made and the remaining gaps.We identify several key physical processes crucial for permafrost dynamics, including soil thermal regimes, freeze-thaw cycles, and soil hydrology, which are underrepresented in many models. While some LSMs have advanced significantly in incorporating these processes, others lack fundamental elements such as latent heat of freeze-thaw, deep soil columns, and Arctic vegetation dynamics. Offline permafrost models provide valuable insights, offering detailed process testing and aiding the prioritization of improvements in coupled LSMs.Our analysis reveals that while significant progress has been made in incorporating permafrost-related processes into coupled LSMs, many small-scale processes crucial for permafrost dynamics remain underrepresented. This is particularly important for capturing the complex interactions between physical and biogeochemical processes required to model permafrost carbon dynamics. We recommend leveraging advancements from offline permafrost models and progressively integrating them into LSMs, while recognizing the computational and technical challenges that may arise in coupled simulations. We highlight the importance of enhancing the representation of physical processes, including through improvements in model resolution and complexity, as this is a fundamental precursor to accurately incorporate biogeochemical processes and capture the permafrost carbon feedback.
A version of the Community Earth System Model modified at the North Carolina State University (CESM-NCSU) is used to simulate the current and future atmosphere following the representative concentration partway scenarios for stabilization of radiative forcing at 4.5 W m(-2) (RCP4.5) and radiative forcing of 8.5 W m(-2) (RCP8.5). Part I describes the results from a comprehensive evaluation of current decadal simulations. Radiation and most meteorological variables are well simulated in CESM-NCSU. Cloud parameters are not as well simulated due in part to the tuning of model radiation and general biases in cloud variables common to all global chemistry-climate models. The concentrations of most inorganic aerosol species (i.e., SO42-, NH4+, and NO3-) are well simulated with normalized mean biases (NMBs) typically less than 20%. However, some notable exceptions are European NH4+, which is overpredicted by 33.0-42.2% due to high NH3 emissions and irreversible coarse mode condensation, and Cl-, that is negatively impacted by errors in emissions driven by wind speed and overpredicted HNO3. Carbonaceous aerosols are largely underpredicted following the RCP scenarios due to low emissions of black carbon, organic carbon, and anthropogenic volatile compounds in the RCP inventory and efficient wet removal. This results in underpredictions of PM2.5 and PM10 by 6.4-55.7%. The column mass abundances are reasonably well simulated. Larger biases occur in surface mixing ratios of trace gases in CESM-NCSU, likely due to numerical diffusion from the coarse grid spacing of the CESM-NCSU simulations or errors in the magnitudes and vertical structure of emissions. This is especially true for SO2 and NO2. The mixing ratio of O-3 is overpredicted by 38.9-76.0% due to the limitations in the O-3 deposition scheme used in CESM and insufficient titration resulted from large underpredictions in NO2. Despite these limitations, CESM-NCSU reproduces reasonably well the current atmosphere in terms of radiation, clouds, meteorology, trace gases, aerosols, and aerosol-cloud interactions, making it suitable for future climate simulations. (C) 2016 Elsevier Ltd. All rights reserved.