共检索到 213

A group of earthquakes typically consists of a mainshock followed by multiple aftershocks. Exploration of the dynamic behaviors of soil subjected to sequential earthquake loading is crucial. In this paper, a series of cyclic simple shear tests were performed on the undisturbed soft clay under different cyclic stress amplitudes and reconsolidation degrees. The equivalent seismic shear stress was calculated based on the seismic intensity and soil buried depth. Furthermore, reconsolidation was conducted at the loading interval to investigate the influence of seismic history. An empirical model for predicting the variation of the accumulative dissipated energy with the number of cycles was established. The energy dissipation principle was employed to investigate the evolution of cyclic shear strain and equivalent pore pressure. The findings suggested that as the cyclic stress amplitude increased, incremental damage caused by the aftershock loading to the soil skeleton structure became more severe. This was manifested as the progressive increase in deformation and the rapid accumulation of dissipated energy. Concurrently, the reconsolidation process reduced the extent of the energy dissipation by inhibiting misalignment and slippage among soil particles, thereby enhancing the resistance of the soft clay to subsequent dynamic loading.

期刊论文 2025-10-01 DOI: 10.1016/j.soildyn.2025.109540 ISSN: 0267-7261

On February 6, 2023, two devastating seismic events, the Kahramanmaras, earthquakes, struck the Eastern Anatolian Fault Line (EAF) at 9-h intervals. The first earthquake, with a moment magnitude (Mw) of 7.7, struck the Pazarc & imath;k district, followed by a second earthquake with a moment magnitude (Mw) of 7.6 in the Elbistan district, both within the Kahramanmaras, province. These dual earthquakes directly impacted eleven provinces in Eastern and Southeastern Anatolia leading to significant loss of life and extensive damage to property and infrastructure. This study focuses on revealing the main parameters causing to the collapse of reinforced concrete (RC) buildings by examining their compliance with legislation and earthquake codes in force at the time of construction. For this purpose, detailed examinations such as field observations, collection of general information and official documents about the buildings, determination of material properties and soil characteristics, and three-dimensional finite element (FE) analysis of 400 totally collapsed RC buildings in the Kahramanmaras,, Ad & imath;yaman, Hatay, and Gaziantep provinces, which were among the cities affected by the Kahramanmaras, earthquakes were performed. The findings of this study contribute to a better understanding of the seismic deficiencies of buildings in earthquake-prone regions and provide information on which strategies to develop to increase the resilience of buildings with similar characteristics in other earthquake regions against future seismic events. Considering that the time from the beginning of the construction of the building until its completion consists of several stages, it can be seen that 43.58 % of the errors that cause damage and collapse of the buildings in this study are made in the construction stage, 25.57 % in the FE analysis stage, 24.77 % in the license stage, and 6.07 % in the after construction stage. Thanks to the development process of earthquake codes, regulations in building inspection practices and easier access to quality materials have greatly reduced the damage and collapse of buildings constructed in recent years.

期刊论文 2025-08-01 DOI: 10.1016/j.jobe.2025.112660

It is generally believed that loess is not prone to liquefaction. However, on December 18, 2023, a magnitude 6.2 earthquake occurred in Gansu Province, China (35.70 degrees N, 102.79 degrees E), triggering a large-scale loess liquefactioninduced flow slide spanning 2.5 km, approximately 10 km from the epicenter. To understand the disastercausing mechanism, this study obtained the physical and mechanical properties of loess in the source area through field surveys and laboratory tests, and characterized the liquefaction behavior of saturated loess layers. The findings indicate that the strong ground motion, saturated loess, and gentle slope collectively contribute to the prevailing dynamic, geological, and topographic conditions. The saturated loess layer primarily comprises silt particles with particle sizes less than 0.075 mm accounting for approximately 92.2 % of its composition. The saturated loess layer at a depth of 11m was liquefied under the action of seismic waves with a peak ground acceleration of 0.40 g, however, due to the unique pore structure of loess, it is observed that pore pressure development rate lags behind strain rise rate during liquefaction process. The majority of strain accumulation occurred during a distinct post-peak stabilization phase following peak seismic activity while pore pressure continues to escalate even after vibration ceases. The results provide scientific insights into understanding the cause contributing to loess liquefaction induced-flow slide disasters due to earthquake.

期刊论文 2025-08-01 DOI: 10.1016/j.soildyn.2025.109342 ISSN: 0267-7261

As a potential source of damage, earthquake-induced liquefaction is a major concern for embankment safety and serviceability. Densification has been a popular method for improving the performance of liquefiable soils. Understanding embankment settlement mechanisms plays a fundamental role in determining densification remediation. In this work, nonlinear dynamic analysis of embankments on liquefiable soils is conducted by the finite-difference program FLAC3D (version 6.0) with the simple anisotropic sand constitutive model. Numerical models are validated via dynamic centrifuge test results reported in the literature. The effects of densification countermeasures on the mean and differential settlements are explored in this study. Furthermore, the effects of the densification spacing and width are investigated to optimize the geometry of the densified regions. The development of pore pressure and the movement of the surrounding loose soil are discussed. The results show that both the mean settlement and differential settlement should be simultaneously utilized to comprehensively assess the overall effectiveness of densification treatment. The mean settlement is influenced by the densification spacing and width, but the differential settlement is highly associated with the inner edge of the densified region. This study provides insight for improving the design of the location and lateral extent of densification regions to prevent excessive embankment settlement.

期刊论文 2025-07-01 DOI: 10.1061/IJGNAI.GMENG-10839 ISSN: 1532-3641

On December 18, 2023, an Ms6.2 earthquake struck Jishishan County, Gansu Province, in western China. The China Earthquake Early Warning Network (CEEWN) captured extensive near-field ground motion data using high-density microelectromechanical system (MEMS) sensors and force-balanced accelerographs (FBAs). Through noise level and usable frequency range assessments of MEMS/FBA recordings, we compiled a strong- motion dataset encompassing the Ms6.2 mainshock and 13 aftershocks (Ms >= 3.0). Analysis of this dataset revealed distinct source characteristics and site effects through spatial distributions and attenuation patterns of peak ground acceleration (PGA, up to 1.1 g at station N002B), peak ground velocity (PGV), and spectral accelerations (SAs) across various periods. The mainshock's near-fault motions exhibited pronounced short-period energy, with 0.2 s SAs exceeding 1.0 gin intensity zones VII-VIII due to hanging wall effects, soil amplification, and topographic influences. Site-to-reference ratio (SSR) analysis identified site nonlinearity above 1 Hz and amplification between 1 and 10 Hz. Observed PGAs and short-period SAs surpassed ground motion model (GMM) predictions with faster attenuation rates, while long-period SAs (>1.0 s) remained below predictions. Residual analysis of intensity measures (IMs) and horizontal-to-vertical spectral ratios (HVSRs) demonstrated progressive site nonlinearity, showing HVSR frequency reductions and amplitude declines at PGAs >500 cm/s(2). This dataset advances regional ground motion model (GMM) development, while our findings on strong ground motion characteristics offer critical insights for earthquake damage assessment and post-disaster reconstruction.

期刊论文 2025-07-01 DOI: 10.1016/j.soildyn.2025.109392 ISSN: 0267-7261

Considering the occurrence of an earthquake, the bearing capacity of a strip footing placed on a saturated cohesive-frictional soil mass has been computed by performing a pseudo-static rigorous analysis incorporating the existence of (i) excess pore water pressures, and (ii) additional seismic-tractions and body forces. The analysis has been carried out by using lower and upper bounds finite elements limit analysis (FELA) in conjunction with the second order cone programming (SOCP) using the Mohr-Coulomb (MC) yield criterion. The generation of the excess pore water pressure in the event of an earthquake has been incorporated by defining a pore pressure coefficient ru-a ratio of the excess pore water pressure to the total vertical overburden stress at any point. The analysis has revealed that the bearing capacity reduces considerably with an increase in the magnitude of horizontal earthquake acceleration. For a given magnitude of earthquake acceleration, the bearing capacity reduces extensively further with an increase in the value of ru. All the computational results have been presented in a non-dimensional manner, and for the validation purpose, necessary comparisons have also been made. The study will be useful for designing foundations in a seismically active zone.

期刊论文 2025-07-01 DOI: 10.1016/j.compgeo.2025.107226 ISSN: 0266-352X

On February 6, 2023, two major earthquakes with magnitudes Mw = 7.7 and Mw = 7.6 struck southeastern Turkiye, causing catastrophic damage and loss of life across 11 provinces, including Malatya. This study focuses on documenting the geotechnical observations and structural damage in Dogansehir, one of the hardest-hit districts not only in Malatya but in the entire affected region. An overview of the-region's tectonic and geological background is presented, followed by an analysis of ground motion data specific to Malatya. A detailed examination of seismic data from stations near Dogansehir was provided to better understand the seismic demands during the earthquakes. The paper then provides insights into the geotechnical conditions, building characteristics, and a damage ratio map of Dogansehir. The influence of local tectonics and geology on the observed damage is analyzed, alongside an evaluation of the seismic performance of masonry and reinforced concrete structures. Dogansehir, located near the epicenters of the Kahramanmaras earthquakes, suffered major structural damage. This was due to the surface rupture occurring near the settlement areas, the establishment of the district centre on the alluvial soil layer and the deficiencies/errors in the building systems. Building settlements on or near active fault zones, as well as on soft soil, leads to serious consequences and should be avoided or require special precautions.

期刊论文 2025-06-15 DOI: 10.1016/j.jobe.2025.112266

Earthquakes and rainfall both cause soil damage and strength degradation of cutting slopes, resulting in increased slope instability. However, few studies have been conducted on the failure mechanisms of cutting slopes under earthquakes and rainfall. In this study, field electrical measurements were conducted to evaluate the damage to a cutting slope hit by the Yangbi Earthquake (MS = 6.4) in Yunnan Province, China. After material segmentation using the resistivity probability density statistical method, we observed several damaged areas running along the slope depth direction, forming several potential sliding surfaces. Furthermore, considering the slope damage after the earthquake, a discrete element model of the slope was developed, and the dynamic process of the gravel-soil landslide under rainfall was analyzed. Compared with low cutting slope with thin overburden sliding along one sliding surface, the results indicate that the high cutting slope with thick overburden slides along several sliding surfaces that formed by the earthquake-step sliding mods. Slope sliding can be divided into four stages: First, the slope body at the bottom area slid and accelerated firstly, while several cracks appear on the top area due to tension (initial stage and acceleration stage). Thereafter, the upper slope body gradually slides along its respective sliding surface. The body at the bottom area of the slope was pushed by that at the upper area and slid at a high velocity along the sliding surfaces due to secondary acceleration (secondary acceleration stage). Finally, the sliding velocity of the slope gradually decreases, and an accumulation is formed, entering a stable stage (deceleration stage).

期刊论文 2025-06-01 DOI: 10.1007/s10064-025-04284-1 ISSN: 1435-9529

Tabriz is located in one of the important seismic areas of the world and has witnessed severe earthquakes in the past centuries. Earthquake is associated with multiple risks including geotechnical risks which affected many cities around the world. One of these important risks is the phenomenon of soil liquefaction. Soil liquefaction is the reason for many damages caused by earthquakes which can cause lots of damage to vital arteries of cities, mines, pipe lines and the buried structures in the soil. One of the recent challenges in dealing with liquefaction is utilizing intelligent tools for predicting the effects of this phenomenon in soil layers. For this purpose, a total number of 100 soil samples are collected, while an empirical approach is also developed for achieving Liquefaction Potential Index (LPI) by means of the depth of the soil layers, SPT values, penetration indices, fines content percentages, ground acceleration, and water level of the soil samples. For prediction purpose, the recently developed configuration of the Gradient Boosting (GB) methods is utilized as the main approach while the Artificial Neural Network (ANN) and the Decision Tree (DT) approaches are utilized for comparative investigations. For validation process, 10% of the samples are utilized in a stochastic way to intelligently evaluate the capability of the GB method in contrast to the alternative approaches. The results demonstrate the capability of the GB approach in providing efficient predictive results in dealing with the LPI prediction problem. Regarding the training phase, GB provided the maximum absolute error of 3.44 x 10-8 while the DT's result is partially competitive with maximum absolute of 3.15. Based on the test phase, GB can provide the lowest Mean Squared Error (MSE) of 0.09 while the DT with 0.11 and ANN with 3.25 have the other ranks. The GB is capable of reaching to lowest Mean Absolute Percentage Error (MAPE) of 3.64 in this phase while the DT with 3.07 and DT and ANN with 4.97 and 26.05 have second and third ranks respectively. 0.98 with 2% inaccuracy rate.

期刊论文 2025-06-01 DOI: 10.1007/s10064-025-04344-6 ISSN: 1435-9529

Paleoliquefaction investigations are crucial for assessing seismic hazard potential and identifying regions susceptible to liquefaction, which is essential for seismic risk-sensitive land-use planning. This research aimed to identify paleoliquefaction sites by reviewing documented descriptions of the damages and ground deformations in Bangladesh during three significant historical earthquakes: the Bengal Earthquake (1885), the Great Assam Earthquake (1897), and the Srimangal Earthquake (1918). A paleoliquefaction map for Bangladesh was generated, locating the paleoliquefaction sites during these three major historical earthquakes. In addition, Standard Penetration Test (SPT) blow count and Down-hole Seismic Tests (DST) were conducted at selected locations to assess the Liquefaction Potential Index (LPI) by using deterministic (simplified) and probabilistic procedures. The results confirmed a high likelihood of liquefaction during future large-magnitude earthquakes. The research outcome will help to distinguish and characterize Bangladesh's susceptible regions to soil liquefaction during potential earthquakes in the future and is recommended for consideration in large-scale construction or development plans.

期刊论文 2025-06-01 DOI: 10.1007/s10064-025-04316-w ISSN: 1435-9529
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共213条,22页