共检索到 2

In recent years, the rapid development of the world's economy has led to the large-scale development and utilization of ecological resources on the earth, due to which the ecological environment has been continuously and seriously damaged, resulting in the waste of resources, soil erosion, land desertification, etc. To avoid further damage to the ecological environment and ecological resources, improve the utilization rate of ecological resources, and ensure the sustainable development of human society, it is necessary to evaluate the ecological environment. In this study, we collected the required data using the Delphi method and remote sensing technology. Secondly, the green Olympic building evaluation system (which refers to the CASBEE method in Japan) was used to evaluate the impact of green roofs on architectural design and the urban ecological environment. Third, a deep learning (DL)-based hybrid model, which consists of a convolutional neural network (CNN) and long-short-term memory (SLSTM), known as CNN-LSTM, was used to evaluate the impact of green roofs on urban ecology and building architectural design. The influence of thermal comfort on the indoor environment of green roof buildings was studied. For experimentation, six samples of Shanghai Thumb Plaza, Splendid Tesco Point, Chaoshan Yuan Hotel, Green Management Office, Huangpu District Domestic Waste Transfer Station, and Changning District Fuxin Slaughterhouse were selected as evaluation objects, and the effect of green roofs on building design and urban ecology was evaluated from six levels: ecological, ornamental, safety, functional, social, and economic. Both the CASBEE and DL-based methods, CNN-LSTM, performed well and increased the evaluation results to some extent. The CNN-LSTM model increased the accuracy of the system by 3.55%, precision by 3.50%, recall by 4.46%, and F1-score by 3.30%. Overall, this study summarizes the existing problems of green rooftop buildings in Shanghai at this stage, which is conducive to formulating optimization strategies to improve the ecological benefits of green roof buildings and has important practical significance for realizing the sustainable development of human society.

期刊论文 2024-02-01 DOI: 10.1007/s00500-024-09637-8 ISSN: 1432-7643

The areal extent of permafrost in China has been reduced by about 18.6 % during the last 30 years. Due to the combined influences of climate warming and human activities, permafrost has been degrading extensively, with marked spatiotemporal variability. Distribution and thermal regimes of permafrost and seasonal freeze-thaw processes are closely related to groundwater dynamics. Permafrost degradation and changes in frost action have extensively affected cold-regions hydrogeology. Progress on some research programs on groundwater and permafrost in two regions of China are summarized. On the Qinghai-Tibet Plateau and in mountainous northwest China, permafrost is particularly sensitive to climate change, and the permafrost hydrogeologic environment is vulnerable due to the arid climate, lower soil-moisture content, and sparse vegetative coverage, although anthropogenic activities have limited impact. In northeast China, permafrost is thermally more stable due to the moist climate and more organic soils, but the presence or preservation of permafrost is largely dependent on favorable surface coverage. Extensive and increasing human activities in some regions have considerably accelerated the degradation of permafrost, further complicating groundwater dynamics. In summary, permafrost degradation has markedly changed the cold-regions hydrogeology in China, and has led to a series of hydrological, ecological, and environmental problems of wide concern.

期刊论文 2013-02-01 DOI: 10.1007/s10040-012-0927-2 ISSN: 1431-2174
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页