Intensifying human activities have triggered significant ecological degradation, necessitating innovative approaches to ecosystem restoration. This study introduces a novel integrated methodology combining Ecological Security Patterns (ESP) and Ecological Risk Assessment (ERA) to identify priority ecological restoration areas in the Hefei Metropolitan Area. By synthesizing these complementary approaches, we overcome the limitations of individual methods and establish a comprehensive framework for prioritizing ecological restoration. We construct a complex ecological network comprising 36 source areas spanning 8313.96 km2 and 92 interconnected ecological corridors extending 24,489.17 km. We have identified 73 ecological restoration nodes and 19 key restoration areas covering 544.45 km2, predominantly located at critical ecological junctions. The study categorizes restoration zones into five distinct types: river and lake wetland restoration, mine environment remediation, urban ecological landscape reconstruction, ecological corridor connectivity restoration, and soil and water conservation improvement. Combining ESP with ERA allows for the identification of regions most vulnerable to ecological damage while preserving key ecological functions and networks. Through the identification of urban ecological conflict zones, this study provides a strategic framework for enhancing ecosystem resilience and promoting sustainable urban development. This research is significant because of its potential to address the urgent need for effective ecological restoration strategies in rapidly urbanizing regions, offering a systematic approach to balance ecological preservation with urban development.
Environmental pollution is a serious problem in many parts of the world, especially in developing countries such as Iran. This study was conducted to investigate chemical pollution by selected heavy metals in the southern cities of Hamadan province, west of Iran including Malayer, Toyserkan, and Nahavand. A total of 90 soil samples were collected from a depth of 0 to 30 cm of agricultural lands. The state of soil pollution was analyzed using geochemical indicators, pollution coefficient, pollution level, and potential ecological risk indices. The highest concentration of arsenic and cadmium in the soil of city of Toyserkan with an average of 19.46 and 0.25 mg kg-1 respectively, and the highest concentration of iron, cobalt, chromium, and antimony in the soil of city of Malayer with an average of 4.36, 20.8, 114.67 and 4.62 mg kg-1 respectively, and the highest concentrations of manganese, copper, and nickel in the soil of city of Nahavand were 268.95, 38.58, and 81.83 mg kg-1, respectively. The results showed that there was a significant difference between the average concentrations of the measured metals in the three cities. In all the studied cities, Mueller's geochemical index was in the non-polluted category, the pollution coefficient was in the low to medium pollution category, the pollution index was in the very low to high pollution category, and the environmental risk index for metals was in the low to very high environmental risk category. Investigation of pollution indicators showed that the soils of the studied areas are about to be polluted with heavy metals. Therefore, it is necessary to consider environmental aspects to reduce and prevent irreparable damage to the soil and the environmental cycle in the long run.
With continued sea level rise and over-exploitation, saline water extends farther inland, causing changes in soil salinity and water quality and leading to permanent land salinization and ecosystem damage. Saltwater intrusion (SWI), causing numerous ecosystem problems and disasters, brings risk to urban ecosystems in coastal cities. Ecological risk, in the Greater Bay Area in China, should be assessed based on the effect of SWI status on ecosystem health. In this study, we built a new ecological risk-assessment model based on the geographic information system (GIS) technique and spatial data. At the conceptual level, four main stressors were identified based on literature reading and fieldwork. Four stress factors (SFs) were thoroughly investigated, namely, SF1: the intensity gradient immersed in saltwater; SF2: the mountain phreatic water supply; SF3: the salinity tolerance of urban greenbelt vegetation; and SF4: the supply capacity of irrigation water to suppress saline water. After a comprehensive evaluation using GIS and the analytic hierarchy process (AHP), we mapped and assessed the ecological risk level of the urban greenbelt for the SWI. Our results showed that the area of urban green space affected by the SWI was approximately 49.31 km2, almost 12.05%. Ecological risk was sorted into five ranks: (1) very low risk 47.53%, (2) low risk 26.29%, (3) medium risk 22.92%, (4) high risk 2.45%, and (5) very high risk (0.8%). The ecological infrastructure of sponges should include freshwater conservation in coastal cities, and more attention should be paid to fresh groundwater discharge from coastal ecosystems in Shenzhen.
Purpose of ReviewThis review examines recent publications on rare earth elements (REE) in soils, critically evaluating their role as emerging soil contaminants. We emphasized new findings and main gaps using a previous review paper published in 2016 by our research group as a reference point. Three major subjects were prioritized: (1) sources, background levels, and behavior of REE in soils; (2) plant development and metabolism as affected by REE exposure; and (3) environmental and human health risk assessments of REE in the soil environment.Recent FindingsPublications addressing the occurrence and fate of REE in the soil environment have more than tripled in the last decade. Coincidentally, global REE exploration has more than doubled in the past 7 years. Because of their unique features, the global demand for REE is expected to increase by at least 50% in the next 10 years. As soils are the main sink of contaminants, we must continue to investigate the consequences of the unceasing addition of these elements in soil ecosystems.SummaryWe highlighted the main sources of REE, their background levels in selected global soils, and their physicochemical behavior. The relationship between REE and plants revealed potential benefits such as environmental stress tolerance. Finally, ecological and human health risk assessment data for REE in soils were carefully discussed in terms of their potential adverse effects on biota. We conclude with a survey in which prominent authors working with REE answered questions about challenges and opportunities for innovative research on REE in soil-plant-animal/human systems.