共检索到 3

The alpine ecosystems of the Qinghai-Tibet Plateau (QTP) provide multiple ecosystem services. In recent decades, these ecosystem services have been profoundly affected by climate change, human activity, and frozen ground degradation. However, related research remains lacking to date in the QTP. To address this gap, the upper reaches of the Shule River, a typical cryospheric-dominated basin in the QTP, was selected. We simultaneously assessed the spatial-temporal patterns and driving factors of ecosystem services, including habitat quality (HQ), net primary productivity (NPP), water conservation (WC), carbon storage (CS), water yield (WY), green space recreation (GSR), and total ecosystem service (TES), by employing the InVEST, CASA, and Noah-MP land surface models in combination with remote sensing and field survey data. Our results showed that: (1) HQ, NPP, WC, CS, WY, and GSR all increased significantly from 2001 to 2020 at rates of 0.004 a(-1), 1.920 g Cm(-2)a(-1), 0.709 mma(-1), 0.237 Mg & sdot;ha(-1)a(-1), 0.212 x 10(8) m(3)a(-1), and 0.038 x 10(9) km(2)a(-1) (P < 0.05), respectively; (2) warm and humid climates, combined with shrinking of barren, contributed to the increases in HQ, NPP, WC, CS, WY, and GSR; (3) frozen ground degradation had promoting effects on HQ, NPP, CS, GSR, and TES, while inhibiting effects were observed on WY and WC (P < 0.05); (4) synergies among ecosystem services were prominent over the past 20 years; (5) the total ecosystem service value increased significantly at a rate of 1.18 x 10(9) CNYa(-1) from 2001 to 2020 (P < 0.05), primarily due to the increase in the provisioning service value.

期刊论文 2025-12-01 DOI: 10.1016/j.habitatint.2025.103579 ISSN: 0197-3975

Alpine ecosystems play an important role in maintaining carbon sequestration, water balance, ecological security, biodiversity and human well-being. However, climate change and high-intensity human activities lead to the continuous degradation of vulnerable alpine ecosystems. Based on this, we reveal trends in ecosystem change in the Qilian Mountains of China on a 40-year scale and identify the primary driving factors of change in alpine ecosystems from the perspective of ecosystem service value (ESV) change, providing a more comprehensive picture of the interactions between human society and natural ecosystem. The results showed that more than 55 % of ecosystem types changed from 1980 to 2018, with forests, grasslands, glaciers and bare land being the most vulnerable ecosystems to disturbance, and forest and grassland ecosystems having significant ESV potential (43.99 % and 29.57 %, respectively). However, significant land use and land cover (LULC) changes over the last decade have led to a reduction in ESV stability in alpine ecosystems, where human activities have a more significant impact on ESV of sparse woodland, shrubland and grassland ecosystem at 2800-4000 m. The temperature rise had a more noticeable impact on the ESV of glaciers, alpine meadows and bare land ecosystems at 4000-5500 m. In the long terms, climate change and population growth will threaten the restoration and management of alpine ecosystems. Different ecological development strategies need to be adopted along the altitude, and the establishment of cross regional horizontal ecological compensation mechanism should be accelerated to promote the sustainable development of ecology and people's livelihood in mountainous areas. The results of this study will provide relevant theoretical basis and reference for decision makers, and provide a model for scientific management and sustainable development of alpine ecosystem resources worldwide.

期刊论文 2023-02-01 DOI: 10.1016/j.ecolind.2023.109893 ISSN: 1470-160X

The rational allocation of the water resources in drylands and the scientific evaluation of their values are important for the regional sustainable development. We estimated the water consumption of each ecosystem in Ejina Oases in the arid area in northwest China based on the water balance equation, then assessed their ecosystem service values (ESVs) using the value per unit area method and the value equivalent factor per unit area method considering the cost of water consumption, respectively, and calculated their water productivities from 1990 to 2015. With the implementation of the ecological water diversion project (EWDP) in 2000, the deciduous broadleaf forest dominated by Populus euphratica had an increasing trend, meanwhile, lakes had a changing process from shrinking and drying up to recovery and expansion from 1990 to 2015. The total water consumption in Ejina Oases decreased from 5.26*10(8) m(3) in 1990 to 4.79*10(8) m(3) in 2000, and then increased continually to 5.97*10(8) m(3) in 2015. The water consumption of forest, grassland and cultivated land hardly changed, while the water consumption of water or wetland changed obviously. The total ESVs estimated using the value per unit area method in Ejina Oases decreased from 1052.6 to 787.3 million yen in the period of 1990-2000, then increased to 1500.6 million yen in 2015, while the ESVs estimated using the value equivalent factor per unit area method decreased from 6368.7 million yen in 1990 to 5892.0 million yen in 2000, then increased to 7139.9 million yen in 2015, and the latter method was more reasonable. The results showed that the EWDP started in 2000 led to the reallocation of water resources and transfer of ESVs among ecosystems, which had obvious performance in the ecological environment and social economy. This study provided a comprehensive view of water use and management, ecological restoration and socio-economic development in this key ecological function zone, and will help decision-makers to formulate the scheme of rational allocation and efficient utilization of water resources in the basin.

期刊论文 2021-01-20 DOI: http://dx.doi.org/10.1007/s13201-023-01901-w ISSN: 2190-5487
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页