Precipitation comes in various phases, including rainfall, snowfall, sleet, and hail. Shifts of precipitation phases, as well as changes in precipitation amount, intensity, and frequency, have significant impacts on regional climate, hydrology, ecology, and the energy balance of the land-atmosphere system. Over the past century, certain progress has been achieved in aspects such as the observation, discrimination, transformation, and impact of precipitation phases. Mainly including: since the 1980s, studies on the observation, formation mechanism, and prediction of precipitation phases have gradually received greater attention and reached a certain scale. The estimation of different precipitation phases using new detection theories and methods has become a research focus. A variety of discrimination methods or schemes, such as the potential thickness threshold method of the air layer, the temperature threshold method of the characteristic layer, and the near-surface air temperature threshold method, have emerged one after another. Meanwhile, comparative studies on the discrimination accuracy and applicability assessment of multiple methods or schemes have also been carried out simultaneously. In recent years, the shift of precipitation from solid to liquid (SPSL) in the mid-to-high latitudes of the Northern Hemisphere has become more pronounced due to global warming and human activities. It leads to an increase in rain-on-snow (ROS) events and avalanche disasters, affecting the speed, intensity, and duration of spring snow-melting, accelerating sea ice and glacier melting, releasing carbon from permafrost, altering soil moisture, productivity, and phenological characteristics of ecosystems, and thereby affecting their structures, processes, qualities, and service functions. Although some progress has been made in the study of precipitation phases, there remains considerable research potential in terms of completeness of basic data, reliability of discrimination schemes, and the mechanistic understanding of the interaction between SPSL and other elements or systems. The study on shifts of precipitation phases and their impacts will play an increasingly important role in assessing the impacts of global climate change, water cycle processes, water resources management, snow and ice processes, snow and ice-related disasters, carbon emissions from permafrost, and ecosystem safety.
2025-02-01 Web of ScienceMega retrogressive thaw slumps (MRTS, >10(6) m(3)) are a major threat to Arctic infrastructure, alter regional biogeochemistry, and impact Arctic carbon budgets. However, processes initiating and reactivating MRTS are insufficiently understood. We hypothesize that MRTS preferentially develop a polycyclic behavior because the material is thermally and mechanically prepared for subsequent generation failure. In contrast to remote sensing, geophysical reconnaissance reveals the inner structure and relative thermal state of MRTS decameters beneath slump surfaces, potentially controlling polycyclicity. Based on their life cycle development, five (M)RTS were studied on Herschel Island, an MRTS hotspot on the Canadian Beaufort coast. We combine >2 km of electrical resistivity tomography (ERT), 500 m of ground-penetrating radar (GPR) and annual monitoring of headwall retreat from 2004 to 2013 to reveal the thermal state, internal structure, and volume loss of slumps. ERT data were calibrated with unfrozen-frozen transitions from frost probing of active layer thickness and shallow boreholes. In initial stage MRTS, ERT displays surficial thermal perturbations a few meters deep, coincident with recent mud pool and mud flow development. In early stage polycyclic MRTS, ERT shows decameter deep-reaching thermal perturbations persisting even 300 years after the last activation. In peak-stage polycyclic MRTS, 3D-ERT highlights actively extending deep-reaching thermal perturbations caused by gully incisions, mud slides and mud flows. GPR and headwall monitoring reveal structural disturbance by historical mud flows, ice-rich permafrost, and a decadal quantification of headwall retreat and slump floor erosion. We show that geophysical signatures identify long-lasting thermal and mechanical disturbances in MRTS predefining their susceptibility to polycyclic reactivation.
2024-10-01 Web of SciencePermafrost degradation profoundly affects carbon storage in alpine ecosystems, and the response characteristics of carbon sequestration are likely to differ at the different stages of permafrost degradation. Furthermore, the sensitivity of different stages of permafrost degradation to climate change is likely to vary. However, related research is lacking so far on the Qinghai-Tibetan Plateau (QTP). To investigate these issues, the Shule River headwaters on the northeastern margin of the QTP was selected. We applied InVEST and Noah-MP land surface models in combination with remote sensing and field survey data to reveal the dynamics of different carbon (vegetation carbon, soil organic carbon (SOC), and ecosystem carbon) pools from 2001 to 2020. A space-for-time analysis was used to explore the response characteristics of carbon sequestration along a gradient of permafrost degradation, ranging from lightly degraded permafrost (H-SP) to severely degraded permafrost (U-EUP), and to analyze the sensitivity of the permafrost degradation gradient to climate change. Our results showed that: (1) the sensitivity of mean annual ground temperature (MAGT) to climatic variables in the U-EUP was stronger than that in the H-SP and S-TP, respectively; (2) rising MAGT led to permafrost degradation, but increasing annual precipitation promoted permafrost conservation; (3) vegetation carbon, SOC, and ecosystem carbon had similar spatial distribution patterns, with their storage decreasing from the mountain area to the valley; (4) alpine ecosystems acted as carbon sinks with the rate of 0.34 Mg ‧ha 1 ‧a 1 during 2001-2020, of which vegetation carbon and SOC accumulations accounted for 10.65 % and 89.35 %, respectively; and (5) the effects of permafrost degradation from H-SP to U-EUP on carbon density changed from promotion to inhibition.
2024-08All ecosystems face ecological challenges in this century. Therefore, it is becoming increasingly important to understand the ecology and degree of local adaptation of functionally important Arctic-alpine biomes by looking at the most diverse taxon of metazoans: the Arthropoda. This is the first study to utilize metabarcoding in the Alpine tundra, providing insights into the effects of micro-environmental parameters on alpha- and beta-diversity of arthropods in such unique environments. To characterize arthropod diversity, pitfall traps were set at three middle-alpine sampling sites in the Scandinavian mountain range in Norway during the snow-free season in 2015. A metabarcoding approach was then used to determine the small-scale biodiversity patterns of arthropods in the Alpine tundra. All DNA was extracted directly from the preservative EtOH from 27 pitfall traps. In order to identify the controlling environmental conditions, all sampling locations were equipped with automatic data loggers for permanent measurement of the microenvironmental conditions. The variables measured were: air temperature [degrees C] at 15 cm height, soil temperature [degrees C] at 15 cm depth, and soil moisture [vol.%] at 15 cm depth. A total of 233 Arthropoda OTUs were identified. The number of unique OTUs found per sampling location (ridge, south-facing slope, and depression) was generally higher than the OTUs shared between the sampling locations, demonstrating that niche features greatly impact arthropod community structure. Our findings emphasize the fine-scale heterogeneity of arctic-alpine ecosystems and provide evidence for trait-based and niche-driven adaptation. The spatial and temporal differences in arthropod diversity were best explained by soil moisture and soil temperature at the respective locations. Furthermore, our results show that arthropod diversity is underestimated in alpine-tundra ecosystems using classical approaches and highlight the importance of integrating long-term functional environmental data and modern taxonomic techniques into biodiversity research to expand our ecological understanding of fine- and meso-scale biogeographical patterns. Our study examines the alpha- and beta-diversity of arthropods in the Arctic-alpine biomes of the Scandes using environmental DNA (eDNA)/metabarcoding. We found that micro-climatological parameters such as air/soil temperature and soil moisture significantly influence the arthropod community structure, highlighting the fine-scale heterogeneity of these ecosystems. Our study emphasizes the importance of integrating long-term functional environmental data and modern taxonomic techniques to accurately assess arthropod diversity and broaden our understanding of biogeographical patterns in alpine-tundra ecosystems.image
2024-02-01 Web of ScienceSimple Summary Microorganisms and their enzymes are crucial to ensuring soil quality, health, and carbon sequestration. Their numerous reactions are essential for biogeochemical cycles. However, a comprehensive review is lacking to summarize the latest findings in agricultural and enzymatic research. Although the relationships between soil enzyme activities and different soil ecosystems, such as arctic and permafrost regions, tropics and subtropics, tundra, steppes, etc., have been intensively investigated, particularly in the context of climate changes, only a few reviews summarize the impact of climate change on soil enzyme activity. This review aims to highlight the main groups of microbial enzymes found in soil (such as alpha-glucosidases and beta-glucosidases, phosphatases, ureases, N-acetyl-glucosaminidases, peptidases, etc.), their role in the global nutrient cycles of carbon, nitrogen, phosphorus, sulfur, carbon sequestration, and the influence of intensive agriculture on microbial enzymatic activity, and the variations in enzyme activity across different climate zones and soil ecosystems. Furthermore, the review will emphasize the importance of microbial enzymes for soil fertility and present both current challenges and future perspectives.Abstract The extracellular enzymes secreted by soil microorganisms play a pivotal role in the decomposition of organic matter and the global cycles of carbon (C), phosphorus (P), and nitrogen (N), also serving as indicators of soil health and fertility. Current research is extensively analyzing these microbial populations and enzyme activities in diverse soil ecosystems and climatic regions, such as forests, grasslands, tropics, arctic regions and deserts. Climate change, global warming, and intensive agriculture are altering soil enzyme activities. Yet, few reviews have thoroughly explored the key enzymes required for soil fertility and the effects of abiotic factors on their functionality. A comprehensive review is thus essential to better understand the role of soil microbial enzymes in C, P, and N cycles, and their response to climate changes, soil ecosystems, organic farming, and fertilization. Studies indicate that the soil temperature, moisture, water content, pH, substrate availability, and average annual temperature and precipitation significantly impact enzyme activities. Additionally, climate change has shown ambiguous effects on these activities, causing both reductions and enhancements in enzyme catalytic functions.
2024-02-01 Web of SciencePermafrost degradation in peatlands is altering vegetation and soil properties and impacting net carbon storage. We studied four adjacent sites in Alaska with varied permafrost regimes, including a black spruce forest on a peat plateau with permafrost, two collapse scar bogs of different ages formed following thermokarst, and a rich fen without permafrost. Measurements included year-round eddy covariance estimates of net carbon dioxide (CO2), mid-April to October methane (CH4) emissions, and environmental variables. From 2011 to 2022, annual rainfall was above the historical average, snow water equivalent increased, and snow-season duration shortened due to later snow return. Seasonally thawed active layer depths also increased. During this period, all ecosystems acted as slight annual sources of CO2 (13-59 g C m(-2) year(-1)) and stronger sources of CH4 (11-14 g CH4 m(-2) from similar to April to October). The interannual variability of net ecosystem exchange was high, approximately +/- 100 g C m(-2) year(-1), or twice what has been previously reported across other boreal sites. Net CO2 release was positively related to increased summer rainfall and winter snow water equivalent and later snow return. Controls over CH4 emissions were related to increased soil moisture and inundation status. The dominant emitter of carbon was the rich fen, which, in addition to being a source of CO2, was also the largest CH4 emitter. These results suggest that the future carbon-source strength of boreal lowlands in Interior Alaska may be determined by the area occupied by minerotrophic fens, which are expected to become more abundant as permafrost thaw increases hydrologic connectivity. Since our measurements occur within close proximity of each other (<= 1 km(2)), this study also has implications for the spatial scale and data used in benchmarking carbon cycle models and emphasizes the necessity of long-term measurements to identify carbon cycle process changes in a warming climate.
2024-01-01 Web of SciencePermafrost degradation profoundly affects carbon storage in alpine ecosystems, and the response characteristics of carbon sequestration are likely to differ at the different stages of permafrost degradation. Furthermore, the sensitivity of different stages of permafrost degradation to climate change is likely to vary. However, related research is lacking so far on the Qinghai-Tibetan Plateau (QTP). To investigate these issues, the Shule River headwaters on the northeastern margin of the QTP was selected. We applied InVEST and Noah-MP land surface models in combination with remote sensing and field survey data to reveal the dynamics of different carbon (vegetation carbon, soil organic carbon (SOC), and ecosystem carbon) pools from 2001 to 2020. A space-for-time analysis was used to explore the response characteristics of carbon sequestration along a gradient of permafrost degradation, ranging from lightly degraded permafrost (H-SP) to severely degraded permafrost (U-EUP), and to analyze the sensitivity of the permafrost degradation gradient to climate change. Our results showed that: (1) the sensitivity of mean annual ground temperature (MAGT) to climatic variables in the U-EUP was stronger than that in the H-SP and S-TP, respectively; (2) rising MAGT led to permafrost degradation, but increasing annual precipitation promoted permafrost conservation; (3) vegetation carbon, SOC, and ecosystem carbon had similar spatial distribution patterns, with their storage decreasing from the mountain area to the valley; (4) alpine ecosystems acted as carbon sinks with the rate of 0.34 Mg ‧ha 1 ‧a 1 during 2001-2020, of which vegetation carbon and SOC accumulations accounted for 10.65 % and 89.35 %, respectively; and (5) the effects of permafrost degradation from H-SP to U-EUP on carbon density changed from promotion to inhibition.
2023-11-15 Web of ScienceBlue carbon has made significant contributions to climate change adaptation and mitigation while assisting in achieving co-benefits such as aquaculture development and coastal restoration, winning international recognition. Climate change mitigation and co-benefits from blue carbon ecosystems are highlighted in the recent Intergovernmental Panel on Climate Change Special Report on Ocean and Cryosphere in a Changing Climate. Its diverse nature has resulted in unprecedented collaboration across disciplines, with conservationists, academics, and politicians working together to achieve common goals such as climate change mitigation and adaptation, which need proper policy regulations, funding, and multi-prong and multi-dimensional strategies to deal with. An overview of blue carbon habitats such as seagrass beds, mangrove forests, and salt marshes, the critical role of blue carbon ecosystems in mitigating plastic/micro-plastic pollution, as well as the utilization of the above-mentioned blue carbon resources for biofuel production, are critically presented in this research. It also highlights the concerns about blue carbon habitats. Identifying and addressing these issues might help preserve and enhance the ocean's ability to store carbon and combat climate change and mitigate plastic/micro-plastic pollution. Checking out their role in carbon sequestration and how they act as the major carbon sinks of the world are integral parts of this study. In light of the global frameworks for blue carbon and the inclusion of microalgae in blue carbon, blue carbon ecosystems must be protected and restored as part of carbon stock conservation efforts and the mitigation of plastic/micro-plastic pollution. When compared to the ecosystem services offered by terrestrial ecosystems, the ecosystem services provided by coastal ecosystems, such as the sequestration of carbon, the production of biofuels, and the remediation of pollution, among other things, are enormous. The primary purpose of this research is to bring awareness to the extensive range of beneficial effects that can be traced back to ecosystems found in coastal environments.
2023-02-01 Web of ScienceThe accelerated or decelerated freezing-thawing processes of the active layer in Xing'an permafrost regions are crucial for the protection of permafrost. To better understand the freezing-thawing processes of the active layer and its driving factors, according to the observation from 2017 to 2020 of soil temperature and water content in the active layer of forest and peatland in two representative hemiboreal ecosystems in the Da Xing'anling Mountains, Northeast China, the study explored in detail the effects of climatic conditions and local factors on the hydrothermal and freezing-thawing processes of active layer soils. The results showed that during the freezing-thawing cycles of 2017-2020, freezing and thawing start times in the peatland and forest ecosystems soils were generally delayed, and it took longer for the active layer soil to completely thaw than to freeze. The annual average soil temperature in the peatland's active layer (5-80 cm) was 0.7-2.0 degrees C lower than that in the forest, and the annual average soil moisture content on the peatland was 5.5%-26.7% higher than that in the forest. Compared with the forest ecosystem soils, the ground surface freezing time of the peatland was delayed by 3-10 d, and the freezing rate decreased by 1.1-1.5 cm d-1, while the beginning time of thawing was advanced by 22-27 d, and the thawing rate decreased by 1.3-1.4 cm d-1. In the process of decreasing soil temperature and increasing soil moisture content, the freezing and thawing rate of the active layer would be reduced, decelerating the freezing-thawing processes of the active layer in the process of decreasing soil temperature and increasing soil moisture content. The results provide the key original data for studying the formation and evolution of active layer and permafrost in the Xing'an permafrost regions in Northeast China and can be used to validate the prediction of ecosystem succession under the combined influences of climate change and permafrost degradation.
2023-02-01 Web of ScienceAlpine ecosystems play an important role in maintaining carbon sequestration, water balance, ecological security, biodiversity and human well-being. However, climate change and high-intensity human activities lead to the continuous degradation of vulnerable alpine ecosystems. Based on this, we reveal trends in ecosystem change in the Qilian Mountains of China on a 40-year scale and identify the primary driving factors of change in alpine ecosystems from the perspective of ecosystem service value (ESV) change, providing a more comprehensive picture of the interactions between human society and natural ecosystem. The results showed that more than 55 % of ecosystem types changed from 1980 to 2018, with forests, grasslands, glaciers and bare land being the most vulnerable ecosystems to disturbance, and forest and grassland ecosystems having significant ESV potential (43.99 % and 29.57 %, respectively). However, significant land use and land cover (LULC) changes over the last decade have led to a reduction in ESV stability in alpine ecosystems, where human activities have a more significant impact on ESV of sparse woodland, shrubland and grassland ecosystem at 2800-4000 m. The temperature rise had a more noticeable impact on the ESV of glaciers, alpine meadows and bare land ecosystems at 4000-5500 m. In the long terms, climate change and population growth will threaten the restoration and management of alpine ecosystems. Different ecological development strategies need to be adopted along the altitude, and the establishment of cross regional horizontal ecological compensation mechanism should be accelerated to promote the sustainable development of ecology and people's livelihood in mountainous areas. The results of this study will provide relevant theoretical basis and reference for decision makers, and provide a model for scientific management and sustainable development of alpine ecosystem resources worldwide.
2023-02-01 Web of Science