共检索到 11

Warming leads to significant loss of CO2 in high-altitude regions (HAR), posing threat to the carbon sink of terrestrial ecosystem. Additionally, the spatial distribution of environmental factors and underlying surfaces also determine the carbon sink pattern. Therefore, it is necessary to systematically explore the carbon sink of HAR. Based on it, choosing the Qilian Mountains (QLM) as the study area, the continuous observation data of 14 eddy covariance in different ecosystems was used to analyze the variation characteristics of carbon use efficiency (CUE) and net ecosystem primary productivity (NEP), which is helpful to systematically understand the response of carbon cycle to climate change in alpine ecosystem. The research results indicated that the QLM serves as an effective carbon sink (13 of the sites yielded a net carbon sink), owing to the combined influences of environmental factors and vegetation characteristics. Annual NEP varied across the 14 sites, ranging from-192.6 to 524.5 g C/m(2)/yr. Limited observation indicated that wetland/swamp had the highest carbon sink, followed by forest, and shrub have the lowest carbon sink in this study. Along the altitudinal gradient, both gross primary productivity (GPP) and ecosystem respiration (Re) demonstrated a declining trend ( P < 0.05), while, CUE displayed an increasing trend. Soil temperature and photosynthetically active radiation dominated the variation in carbon exchange and CUE along the altitudinal gradient. However, soil moisture was the dominant factor in drought ecosystem. This study provides basis for the assessment of carbon sink of the HAR.

2024-09-15 Web of Science

The Qinghai-Tibet Plateau (QTP), known as the Earth's third pole, is highly sensitive to climate change. Various environmental degradation has occurred due to the effects of climate warming such as the degradation of permafrost and the thickening of active layers. Evapotranspiration, as a key element of hydrothermal coupling, has become a key factor of the plateau environment for deciphering deterioration, and the FAO P-M model has a good physical foundation and simple model data requirements as a primary tool to study the plateau evapotranspiration. There has been a large research base, but the estimation of evapotranspiration in alpine regions is still subject to many uncertainties. This is reflected in the fact that the classification of underlying surface types has not been sufficiently detailed and the evapotranspiration characteristics of some special underlying surface types are still unclear. Therefore, in this work, we modified the FAO P-M coefficients based on the characteristics of actual evapotranspiration measured by the Eddy covariance system and the key influencing factors to better simulate the actual evapotranspiration in alpine swamp meadow. The results were as follows: (1) Both ETa measured by the Eddy covariance system and ET0 calculated by FAO P-M showed the same trend at the daily and annual scales and hysteresis was confirmed to exist, so the error caused by hysteresis should be considered in further research. (2) The annual ETa was 566.97 mm and annual ETa/P was 0.76, and about 11.19% of ETa occurred during the night. The ETa was 2.15 during the non-growing seasons, implying that a large amount of soil water was released into the air by evapotranspiration. (3) The evapotranspiration characteristics of alpine swamp meadow are formed under the following conditions: control of net radiation (R-n) affected by VPD during the growing season and affected by soil temperature and humidity during the non-growing season. Precipitation and soil water content are no longer the main controlling factors of evapotranspiration during the growing season at the alpine swamp meadow as the volume soil water content tends to saturate. (4) The basic corrected K-c was 1.14 during the initial and mid-growing season, 1.05 during the subsequent growing season, and 0-0.25 during the non-growing season, and the correction factor process can also provide ideas for correcting the K-c of other vegetation.

2023-10-15

Cold region ecosystems store vast amounts of soil organic carbon (C), which upon warming and decomposition can affect the C balance and potentially change these ecosystems from C sinks to carbon dioxide (CO2) sources. We quantified the decadal year-round CO2 flux from an alpine steppe-ecosystem on the Tibetan Plateau using eddy covariance and automatic chamber approaches during a period of significant warming (0.13 degrees C per 10 years; and 0.18 degrees C in the non-growing season alone: 1st October to next 30th April). The results showed that ongoing climate change, mainly warming within the topsoil layers, is the main reason for the site's change from a sink for to a source of CO2 in the atmosphere. Non-growing-season ecosystem respiration accounted for 51% of the annual ecosystem respiration and has increased significantly. The growing seasons (1st May to 30th September) were consistent CO2 sink periods without significant changes over the study period. Observations revealed high-emission events from the end of the non-growing season to early in the growing season (1st March to fifteenth May), which significantly (p < 0.01) increased at a rate of 22.6 g C m(-2) decade(-1), ranging from 14.6 +/- 10.7 g C m(-2) yr(-1) in 2012 to 35.3 +/- 12.1 g C m(-2) yr(-1) in 2017. Structural equation modeling suggested that active layer warming was the key factor in explaining changes in ecosystem respiration, leading to significant changes in net ecosystem exchange over the period 2011-2020 and indicated that these changes have already transformed the ecosystem from a CO2 sink into a source. These results can be used to improve our understanding of the sensitivity of ecosystem respiration to increased warming during the non-growing period.

2022-01-01 Web of Science

Warming of the Arctic can stimulate microbial decomposition and release of permafrost soil carbon (C) as greenhouse gases, and thus has the potential to influence climate change. At the same time, plant growth can be stimulated and offset C release. This study presents a 15-year time series comprising chamber and eddy covariance measurements of net ecosystem C exchange in a tundra ecosystem in Alaska where permafrost has been degrading due to regional warming. The site was a carbon dioxide source to the atmosphere with a cumulative total loss of 781.6 g C m(-2) over the study period. Both gross primary productivity (GPP) and ecosystem respiration (R-eco) were already likely higher than historical levels such that increases in R-eco losses overwhelmed GPP gains in most years. This shift to a net C source to the atmosphere likely started in the early 1990s when permafrost was observed to warm and thaw at the site. Shifts in the plant community occur more slowly and are likely to constrain future GPP increases as compared to more rapid shifts in the microbial community that contribute to increased R-eco. Observed rates suggest that cumulative net soil C loss of 4.18-10.00 kg C m(-2)-8%-20% of the current active layer soil C pool-could occur from 2020 to the end of the century. This amount of permafrost C loss to the atmosphere represents a significant accelerating feedback to climate change if it were to occur at a similar magnitude across the permafrost region.

2021-06-01 Web of Science

The atmospheric methane (CH4) concentration, a potent greenhouse gas, is on the rise once again, making it critical to understand the controls on CH4 emissions. In Arctic tundra ecosystems, a substantial part of the CH4 budget originates from the cold season, particularly during the zero curtain (ZC), when soil remains unfrozen around 0 degrees C. Due to the sparse data available at this time, the controls on cold season CH4 emissions are poorly understood. This study investigates the relationship between the fall ZC and CH4 emissions using long-term soil temperature measurements and CH4 fluxes from four eddy covariance (EC) towers in northern Alaska. To identify the large-scale implication of the EC results, we investigated the temporal change of terrestrial CH4 enhancements from the National Oceanic and Atmospheric Administration monitoring station in Utqiagvik, AK, from 2001 to 2017 and their association with the ZC. We found that the ZC is extending later into winter (2.6 0.5 days/year from 2001 to 2017) and that terrestrial fall CH4 enhancements are correlated with later soil freezing (0.79 0.18-ppb CH4 day(-1) unfrozen soil). ZC conditions were associated with consistently higher CH4 fluxes than after soil freezing across all EC towers during the measuring period (2013-2017). Unfrozen soil persisted after air temperature was well below 0 degrees C suggesting that air temperature has poor predictive power on CH4 fluxes relative to soil temperature. These results imply that later soil freezing can increase CH4 loss and that soil temperature should be used to model CH4 emissions during the fall. Plain Language Summary Methane (CH4) is a powerful greenhouse gas, capturing more heat per molecule than carbon dioxide (CO2). Although CH4 is less concentrated in the atmosphere, it is the second most important greenhouse gas with respect to climate change after CO2. Arctic tundra ecosystems are potentially major sources of CH4, given large soil carbon storage and generally wet conditions, favorable to CH4 production. This study investigates if the persistence of unfrozen soils is associated with higher CH4 emissions from the Arctic. We combined long-term soil temperature measurements, terrestrial CH4 enhancements from the National Oceanic and Atmospheric Administration monitoring station in Utqiagvik, AK, and CH4 emissions from Arctic tundra ecosystems across four stations in the North Slope of Alaska. Our results show that from 2001 to 2017 the soil is freezing later and that later soil freezing is associated with higher fall CH4 enhancements. Given that unfrozen soils are related to higher CH4 emissions, a later soil freezing could contribute to the observed increase in the regional atmospheric CH4 enhancement. Unfrozen soil layers persisted after the air temperature was well below 0 degrees C, suggesting that air temperature does not properly predict the sensitivity of CH4 emissions to climate warming.

2019-08-01 Web of Science

Quantifying net CO2 exchange (NEE) of arctic terrestrial ecosystems in response to changes in climatic and environmental conditions is central to understanding ecosystem functioning and assessing potential feedbacks of the carbon cycle to future climate changes. However, annual CO2 budgets for arctic tundra are rare due to the difficulties of performing measurements during non-growing seasons. It is still unclear to what extent arctic tundra ecosystems currently act as a CO2 source, sink or are in balance. This study presents year-round eddy-covariance (EC) measurements of CO2 fluxes for an arctic heath ecosystem on Disko Island, West Greenland (69 degrees N) over five years. Based on a fusion of year-round EC-derived CO2 fluxes, soil temperature and moisture, the process-oriented model (CoupModel) has been constrained to quantify an annual budget and characterize seasonal patterns of CO2 fluxes. The results show that total photosynthesis corresponds to -202 +/- 20 g C m(-2) yr(-1) with ecosystem respiration of 167 +/- 28 g C m(-2) yr(-1), resulting in NEE of -35 +/- 15 g C m(-2) y(-1). The respiration loss is mainly described as decomposition of near- surface litter. A year with an anomalously deep snowpack shows a threefold increase in the rate of ecosystem respiration compared to other years. Due to the high CO2 emissions during that winter, the annual budget results in a marked reduction in the CO2 sink. The seasonal patterns of photosynthesis and soil respiration were described using response functions of the forcing atmosphere and soil conditions. Snow depth, topography-related soil moisture, and growing season warmth are identified as important environmental characteristics which most influence seasonal rates of gas exchange.

2019-07-15 Web of Science

Large uncertainties exist in carbon-water-climate feedbacks in cold regions, partly due to an insufficient understanding of the simultaneous effects of climatic and biotic controls on water and carbon dynamics. The 10-year growing season flux data were analyzed to evaluate the relative contributions of climatic and biotic effects on the variability of water vapor (ET) and net ecosystem CO2 (NEE) exchanges over a humid alpine deciduous shrubland on the northeastern Qinghai-Tibetan Plateau. The results showed that the alpine shrubland ecosystem acted as a water source and a carbon sink during the growing season, and its potential ET and NEE ranged from 161.4 mm and -41.0 g Cm-2 to 408.0 mm and -278.4 gCm(-2) at a 95% confidence interval, respectively. The average 8-day ET and NEE during the early growing season (June to July) were both significantly (P < 0.05) more than those of the late growing season (August to September). And the slopes of ET and NEE against the Julian day during the two growth stages also changed significantly (P < 0.01). Such asymmetric manners of ET and NEE during the two growth stages were probably related to the seasonal variations of net radiation (Rn) and vegetation growth (satellite-derived enhanced vegetation index: EVI), respectively. The structural equation models showed that the seasonal variations of 8-day ET were jointly determined by Rn and vapor pressure deficit (VPD), as partly indicated by a modest decoupling coefficient (0.54 +/- 0.03). The seasonal variability in 8-day NEE was controlled by the combinations of EVI and growing season degree days (GDD). The standardized coefficient of the direct effect of EVI on ET was 0.16, much less than the corresponding value (0.51) on NEE, suggesting that a weak coupling between ET and NEE arose likely because water vapor loss were about half controlled by surface evaporation, whereas CO2 flux were largely regulated by vascular plant activity. Our results highlighted the asymmetric sensitivities of ET and NEE during the early and the late growing season, and the weak coupling of water loss and carbon fixation during the whole growing season. These findings would provide a new sight to understand the growth stage-dependent responses of water budget and carbon sequestration to grazing management and climate change in humid alpine shrublands.

2019-04-15 Web of Science

Eastern Siberia Russia is currently experiencing a distinct and unprecedented rate of warming. This change is particularly important given the large amounts of carbon stored in the yedoma permafrost soils that become vulnerable to thaw and release under warming. Data from this region pertaining to year-round carbon, water, and energy fluxes are scarce, particularly in sensitive ecotonal ecosystems near latitudinal treeline, as well as those already impacted by permafrost thaw. Here we investigated the interannual and seasonal carbon dioxide, water, and energy dynamics at an ecotonal forested site and a disturbed thermokarst-impacted site. The ecotonal site was approximately neutral in terms of CO2 uptake/release, while the disturbed site was either a source or neutral. Our data suggest that high rates of plant productivity during the growing season at the disturbed site may, in part, counterbalance higher rates of respiration during the cold season compared to the ecotonal site. We also found that the ecotonal site was sensitive to the timing of the freezeup of the soil active layer in fall, releasing more CO2 when freezeup occurred later. Both sites showed a negative water balance, although the ecotonal site appeared more sensitive to dry conditions. Water use efficiency at the ecotonal site was lower during warmer summers. Overall, these Siberian measurements indicate ecosystem sensitivity to warmer conditions during the fall and to drier conditions during the growing season and provide a better understanding of ecosystem response to climate in a part of the circumpolar Arctic where current knowledge is weakest. Plain Language Summary As Siberia warms, the frozen soils known as permafrost start to thaw, causing an irregular terrain of pits and mounds called thermokarst. Large amounts of carbon in Siberian soils have been locked away in permafrost for thousands of years, becoming vulnerable to release under thaw and thermokarst formation. This will potentially result in large amounts of additional greenhouse gases in the atmosphere, amplifying climate warming. We examined carbon dioxide (CO2) fluxes over multiple years at two sites in northeastern Siberia, an ecotonal site that lies at the transition between the boreal forest and tundra biomes, and a site with thermokarst. We found that the ecotonal site is carbon neutral, consuming the same amount of CO2 as it takes up from the atmosphere. However, this site releases greater amounts of CO2 in years when soil freeze occurred later, which is expected to become common in the future. The thermokarst site released significantly more CO2, but it was also marked by greater plant growth, thereby off-setting some of the CO2 lost. Due, in part, to a lack of data, models represent terrestrial ecosystem carbon dynamics in Siberia poorly and do not take into changes in carbon cycling that occur with thermokarst formation.

2017-10-01 Web of Science

Global climate change has already had observable effects on the environment. For instance glaciers have shrunk, ice on rivers and lakes is breaking up earlier, lands are deteriorating, plant and animal ranges have shifted and trees are flowering sooner. Carbon emission is considered as the strongest factor for global warming. Removing atmospheric carbon and storing it in the terrestrial biosphere is one of the cost-effective options, to compensate greenhouse gas emissions. Millions of acres of abandoned mine land throughout the world, if restored and converted into vegetative land, would solve global warming and would remediate degraded wastelands. Reclamation of mining wastelands using an integrated-biotechnological approach (IBA) has resulted in the improvement in the physicochemical properties of the soil. The findings presented in this chapter may help the industries to achieve clean development mechanism status through afforestation of degraded lands as per the guidelines of United Nations Framework Convention on Climate Change.

2015-01-01 Web of Science

Changes in snow cover depth and duration predicted by climate change scenarios are expected to strongly affect high-altitude ecosystem processes. This study investigates the effect of an exceptionally short snow season on the phenology and carbon dioxide source/sink strength of a subalpine grassland. An earlier snowmelt of more than one month caused a considerable advancement (40 days) of the beginning of the carbon uptake period (CUP) and, together with a delayed establishment of the snow season in autumn, contributed to a two-month longer CUP. The combined effect of the shorter snow season and the extended CUP led to an increase of about 100% in annual carbon net uptake. Nevertheless, the unusual environmental conditions imposed by the early snowmelt led to changes in canopy structure and functioning, with a reduction of the carbon sequestration rate during the snow-free period.

2013-04-01 Web of Science
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共11条,2页