共检索到 1

Using air-cement-treated clay (ACTC) as a subgrade material for flexible pavements has gained widespread interest and acceptance. The mechanical properties of ACTC, including its compressive strength and elastic modulus (i.e., equivalent elastic modulus, Eeq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{{{\text{eq}}}}$$\end{document}) are required to realistically model its behavior in simulating pavement structure. This paper investigates the impact of different mixing proportions, particularly cement content and unit weight, on the mechanical properties of ACTC. These properties include its unconfined compressive strength (qu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_{{\text{u}}}$$\end{document}) and elastic moduli (initial modulus (E0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{{0}}$$\end{document}), secant modulus (E50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{{{50}}}$$\end{document}), and Eeq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{{{\text{eq}}}}$$\end{document}). The aim of the current study is to develop an equation for estimating the Eeq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{{{\text{eq}}}}$$\end{document}, which is essential for analyzing pavement structures under cyclic loading. The study involves applying continuous monotonic and cyclic loads to evaluate the mechanical properties of ACTC mixtures with varying cement contents (35-135%) and controlled unit weights (8, 10, and 12 kN/m3). Our study findings indicate that both qu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_{{\text{u}}}$$\end{document} and the elastic moduli are significantly influenced by cement content and unit weight, and are well described using the effective void ratio (est\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_{{{\text{st}}}}$$\end{document}) parameter. The ranges for qu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_{{\text{u}}}$$\end{document}, E0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{{0}}$$\end{document}, and E50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{{{50}}}$$\end{document} were 51.9-411.2 kPa, 42.8-289.4 MPa, and 33.9-183.1 MPa, respectively. Eeq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{{{\text{eq}}}}$$\end{document} varied between 37.6 and 289.4 MPa, depending upon the cement content, unit weight, and applied stress level. Notably, Eeq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{{{\text{eq}}}}$$\end{document} values decreased with increasing vertical stress. A simplified equation, accounting for the combined effects of cement content and unit weight on the Eeq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{{{\text{eq}}}}$$\end{document} variation under different stress levels, is developed and recommended for practical use in designing ACTC mixtures for pavement analysis.

期刊论文 2025-06-01 DOI: 10.1007/s13369-024-09096-1 ISSN: 2193-567X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页