共检索到 5

This paper presents a comprehensive assessment of the accuracy of high-frequency (HF) earth meters in measuring the tower-footing ground resistance of transmission line structures, combining simulation and experimental results. The findings demonstrate that HF earth meters reliably estimate the harmonic grounding impedance (R25kHz) at their operating frequency, typically 25 kHz, for a wide range of soil resistivities and typical span lengths. For the analyzed tower geometries, the simulations indicate that accurate measurements are obtained for adjacent span lengths of approximately 300 m and 400 m, corresponding to configurations with one and two shield wires, respectively. Acceptable errors below 10% are observed for span lengths exceeding 200 m and 300 m under the same conditions. While the measured R25kHz does not directly represent the resistance at the industrial frequency, it provides a meaningful measure of the grounding system's impedance, enabling condition monitoring and the evaluation of seasonal or event-related impacts, such as damage after outages. Furthermore, the industrial frequency resistance can be estimated through an inversion process using an electromagnetic model and knowing the geometry of the grounding electrodes. Overall, the results suggest that HF earth meters, when correctly applied with the fall-of-potential method, offer a reliable means to assess the grounding response of high-voltage transmission line structures in most practical scenarios.

期刊论文 2025-04-11 DOI: 10.3390/en18081959

The advancement of green energy batteries as alternative energy sources is crucial for addressing the issues posed by hazardous chemicals and their disposal, thereby mitigating environmental damage caused by direct or indirect impacts of pollution. Recently, novel Earth Battery Systems (EBS) have been investigated, utilizing various types of soils, compost, and electrodes, with water as a fixed electrolyte. In this study, EBS are characterized using multiple techniques, including Linear Sweep Voltammetry (LSV) and Electrochemical Impedance Spectroscopy (EIS). Our findings reveal that, compared to soil-based earth batteries - which exhibit high impedance values, the open-circuit voltage (Voc) and short-circuit current (Isc) are significantly enhanced in vermi-compost-based earth batteries fabricated using steel-201 as the anode and graphite as the cathode. Furthermore, the critical role of organic matter in promoting ion transport and enhancing the system's overall efficiency is demonstrated through Cyclic Voltammetry (CV) and Ionic conductivity analysis. To ensure the sustainability of electrodes within the earth battery, corrosion studies are conducted using Tafel analysis. The results indicate that electrode corrosion can be effectively controlled by the strategic selection of corrosion inhibitors. Thus, this work lays the foundation for developing efficient, durable, and environmentally friendly EBS systems using soil and compost.

期刊论文 2025-04-01 DOI: 10.1007/s00339-025-08365-6 ISSN: 0947-8396

Polybrominated diphenyl ethers (PBDEs), a type of brominated flame retardant, are of global concern due to their environmental persistence, bioaccumulation, toxicity, and resistance to conventional remediation methods. In this study, the electrochemical reduction of 2,2 ',4,4 '-tetrabromodiphenyl ether (BDE-47) with Pd/Metal foam electrodes (Ni, Cu, and Ag) was investigated. The effect of Pd loadings was explored, and the results show that Pd loading enhances the debromination performance, with 15.16%Pd/Ni foam exhibiting the best efficiency, followed by 9.37%Pd/Cu and 10.26%Pd/Ag. The degradation mechanisms for Pd/Ni and Pd/Ag are primarily hydrogen atom transfer, while for Pd/Cu, electron transfer dominates. Among the reduction products, Pd/Ni foam shows the highest debromination capability. The impact of electrolytes, current intensity, and bromination degrees of PBDEs was evaluated for 15.16%Pd/Ni. The results reveal that the presence of electrolytes inhibits BDE-47 degradation; the degradation rate of BDE-47 increases with current density, peaks at 4 mA, and decreases as current rises; and 15.16%Pd/Ni foam can effectively degrade PBDEs with varying bromination levels. Additionally, cycling tests show a decrease in efficiency from 94.3% (first cycle) to 56.58% (fourth cycle), attributed to Pd loss and structural damage. The findings offer valuable insights for developing efficient, sustainable catalytic materials for the electrochemical degradation of PBDEs and other persistent organic pollutants.

期刊论文 2025-03-14 DOI: 10.3390/pr13030853

When a long distance HVDC transmission system discharges current into the earth through its grounding electrode, ground potential differences appear in a large area. And therefore part of the DC current may flow into nearby pipelines which may be dangerous to the equipment and personnel, and may aggravate corrosion. In this paper, an equivalent circuit based on the method of moments is introduced to calculate the current and potential distributions along a pipeline with damaged anticorrosive coating. The current-dependent electrochemical polarization potential between soil and the metal pipe, due to the damage of the anticorrosive coating, is taken into account by using the Newton-Raphson scheme. The circuit is verified through a reduced scale experiment. By examining the circuit, the effect of the damaged anticorrosive coating on the leakage current and the pipe potential with respect to soil along the pipeline is analyzed.

期刊论文 2024-11-01 DOI: 10.17775/CSEEJPES.2020.05870 ISSN: 2096-0042

Soil electrokinetic (SEK) is a remarkable technology that has applications in a variety of fields, such as polluted soil remediation, soil restoration, geophysics, dewatering, seed germination, pollution prevention, sedimentation, and consolidation. The current review is a continuation of our recently published series on process design modifications and material additives. There are three reviews have been recently published. The 1st and 2nd reviews were focused on SEK classification according to electrode position/types of contaminants movement (horizontal, vertical, and mixed horizontal and vertical) during (1993-2020) [1] and (2021-2022) [2], respectively. The 3rd review summarized the materials additives for enhancing the SEK intensification process during 2017-2020 [3]. Modifications were made to the shape of the electrodes to make research and operation more convenient and efficient. Based on exhaustive searches in six scientific search engines, we focused on the various roles of utilizing the perforated electrodes, pipes (a tubular section, or hollow cylinder, made of hard plastic), and nozzles (a tubular section, or hollow cylinder, made of flexible plastic) (PEPN) during SEK. The PEPN could perform SEK properly, remove nitrate, collect drainage water, reduce pH advection, enhance materials injection, distribute water throughout treated soil, incorporate a vacuum system, and monitor wells. Although the perforated electrodes may be considered an economic advantage due to the reduction of electrode surface area and, consequently, total costs, no comparative studies have been conducted to determine the effects of different electrode surface areas on the SEK efficiency, operation time, and energy consumption, which should be considered in future research.

期刊论文 2024-01-01 DOI: 10.1016/j.ijoes.2023.100406 ISSN: 1452-3981
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页