Elemental carbon (EC), also known as black carbon, plays an important role in climate change. Accurately assessing EC concentration in aerosols remains challenging due to the overestimations caused by carbonates and organic carbon (OC) during thermal-optical measurement in the Tibetan Plateau (TP). This study evaluates the extent of EC overestimated by carbonates and OC at four remote sites (Nyalamu, Lulang, Everest and Ngari) in southern and western of the TP using different treatments. The average overestimation of EC concentration due to acid treatment was consistent across all sites (25.5 f 2.4 %). After correction, the proportion of EC overestimated by carbonates were approximately 8.5 f 7.3 %, 12.3 f 6.9 %, 18.1 f 11.8 % and 22.7 f 13.3 %, respectively, revealing an increasing trend from humid to arid regions. Methanol-soluble OC (MSOC) concentrations were significantly correlated with the reduction of EC concentrations, indicating that the methanol extraction effectively mitigates EC overestimation. Seasonal variation of carbonaceous aerosol concentrations was significantly affected by sources from South Asia. Despite the variations in climate and aerosol sources, the average overestimations of measured EC concentration by carbonates and OC were similar at Nyalamu (49.4 f 14.0 %), Lulang (47.8 f 8.4 %), Everest (48.7 f 15.9 %) and Ngari (49.3 f 13.7 %) sites. Therefore, the actual EC concentrations were only about 51.2 f 13.1 % of the original values. This estimation will significantly enhance the contribution of brown carbon (BrC) to radiative forcing relative to EC, highlighting a critical area for future research. Investigating the actual concentrations of EC in the TP provides critical data to support model simulation and validate model accuracy, further enhancing our understanding of EC's impacts on climate warming and glacier melting.
2024-12-15 Web of ScienceCarbonaceous particles have been confirmed as major components of ambient aerosols in urban environments and are related to climate impacts and environmental and health effects. In this study, we collected different-size particulate matter (PM) samples (PM1, PM2.5, and PM10) at an urban site in Lanzhou, northwest China, during three discontinuous one-month periods (January, April, and July) of 2019. We measured the concentrations and potential transport pathways of carbonaceous aerosols in PM1, PM2.5, and PM10 size fractions. The average concentrations of OC (organic carbon) and EC (elemental carbon) in PM1, PM2.5, and PM10 were 6.98 +/- 3.71 and 2.11 +/- 1.34 mu g/m(3), 8.6 +/- 5.09 and 2.55 +/- 1.44 mu g/m(3), and 11.6 +/- 5.72 and 4.01 +/- 1.72 mu g/m(3). The OC and EC concentrations in PM1, PM2.5, and PM10 had similar seasonal trends, with higher values in winter due to the favorable meteorology for accumulating pollutants and urban-increased emissions from heating. Precipitation played a key role in scavenge pollutants, resulting in lower OC and EC concentrations in summer. The OC/EC ratios and principal component analysis (PCA) showed that the dominant pollution sources of carbon components in the PMs in Lanzhou were biomass burning, coal combustion, and diesel and gasoline vehicle emissions; and the backward trajectory and concentration weight trajectory (CWT) analysis further suggested that the primary pollution source of EC in Lanzhou was local fossil fuel combustion.
2024-08Particulate black carbon (BC) affects global warming by absorbing the solar radiation, by affecting cloud formation, and by decreasing ground albedo when deposited to snow or ice. BC has also a wide variety of adverse effects on human population health. In this article we reviewed the BC emission factors (EFs) of major anthropogenic sources, i.e. traffic (incl. marine and aviation), residential combustion, and energy production. We included BC EFs measured directly from individual sources and EFs derived from ambient measurements. Each source category was divided into sub-categories to find and demonstrate systematical trends, such as the potential influence of fuel, combustion technologies, and exhaust/flue gas cleaning systems on BC EFs. Our review highlights the importance of society level emission regulation in BC emission mitigation; a clear BC emission reduction was observed in ambient studies for road traffic as well as in direct emission measurements of diesel-powered individual vehicles. However, the BC emissions of gasoline vehicles were observed to be higher for vehicles with direct fuel injection techniques (gasoline direct injection) than for vehicles with port-fueled injection, indicating potentially negative trend in gasoline vehicle fleet BC EFs. In the case of shipping, a relatively clear correlation was seen between the engine size and BC EFs so that the fuel specific BC EFs of the largest engines were the lowest. Regarding the BC EFs from residential combustion, we observed large variation in EFs, indicating that fuel type and quality as well as combustion appliances significantly influence BC EFs. The largest data gaps were in EFs of large-scale energy production which can be seen crucial for estimating global radiative forcing potential of anthropogenic BC emissions. In addition, much more research is needed to improve global coverage of BC EFs. Furthermore, the use of existing data is complicated by different EF calculation methods, different units used in reporting and by variation of results due to different experimental setups and BC measurement methods. In general, the conducted review of BC EFs is seen to significantly improve the accuracy of future emission inventories and the evaluations of the climate, air quality, and health impacts of anthropogenic BC emissions.
2023-03-01 Web of ScienceCharacteristics of carbonaceous aerosol (CA) and its light absorption properties are limited in Karachi, which is one of the most polluted metropolitan cities in South Asia. This study presents a comprehensive measurement of seasonality of CA compositions and mass absorption cross- (MAC) of elemental carbon (EC) and water-soluble organic carbon (WSOC) in total suspended particles (TSP) collected from February 2015 to March 2017 in the southwest part of Karachi. The average TSP, organic carbon (OC), and EC concentrations were extremely high with values as 391.0 +/- 217.0, 37.2 +/- 28.0, and 8.53 +/- 6.97 mg/m(3), respectively. These components showed clear seasonal variations with high concentrations occurring during fall and winter followed by spring and summer. SO42-, NO3-, K+, and NH4+ showed similar variations with CA, implying the significant influence on atmospheric pollutants from anthropogenic activities. Relatively lower OC/EC ratio (4.20 +/- 2.50) compared with remote regions further indicates fossil fuel combustion as a primary source of CA. Meanwhile, sea salt and soil dust are important contribution sources for TSP. The average MAC of EC (632 nm) and WSOC (365 nm) were 6.56 +/- 2.70 and 0.97 +/- 0.37 m(2)/g, respectively. MACEC is comparable to that in urban areas but lower than that in remote regions, indicating the significant influence of local emissions. MACWSOC showed opposite distribution with EC, further suggesting that OC was significantly affected by local fossil fuel combustion. In addition, dust might be an important factor increasing MACWSOC particularly during spring and summer. (C) 2020 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
2023-02Black carbon plays an important role in climate change. Whereas, accurate measurement of black carbon (also known as elemental carbon (EC)) is still a challenging issue because portion of the pyrolytic carbon produced from the organic carbon (OC) can cause the overestimation of EC when measured by thermal-optical method. As one of the remote regions in the world, the Tibetan Plateau (TP) is characterized as high OC/EC ratio in its atmosphere. In this study, potential influence of relative high OC concentration to EC were investigated at three remote sites (Yaze, Everest and Nam Co) in the TP. The results showed that carbonaceous aerosols from different sources can affect the fraction of OC extracted by methanol. Concentration of OC extracted by methanol had a significantly positive correlation with the reduction of pyrolytic carbon and EC concentrations, indicating that part of OC extracted by methanol can decrease the production of pyrolytic carbon and then reduce the over-estimation of EC. After considering this effect, it is shown in this study that actual EC concentration at Yaze, Everest and Nam Co were overestimated by approximately 40.0 +/- 12.6%, 28.8 +/- 9.1% and 24.8 +/- 4.7%, respectively. Accordingly, combined with the overestimation of EC concentration by carbonates, actual ratios of solar energy absorbed by organic carbon to EC were 1.67, 2.33 and 2.78 times those of original ones at Yaze, Everest and Nam Co, respectively. Therefore, warming effect caused by EC on the TP should be lower than that previously estimated. This phenomenon needs to be considered for both in situ study and model simulation in the future.
2023-02-01The study on the light absorption of carbonaceous components is a research hotspot in the field of aerosol optical. Size distribution and lensing effect have great influence on the absorption of elemental carbon (EC) and brown carbon (BrC). However, few studies were conducted on the spatial variations of BC and BrC absorption with different size ranges in different regions. In this study, the mass concentration, absorption coefficient and mass absorption efficiency (MAE) of size-resolved carbonaceous components in three functional areas of Nanjing were compared based on offline sampling and experimental analysis. Bimodal and unimodal size distributions were found for EC and BrC mass concentrations at the three sites, respectively. Affected by the emission of diesel vehicles and aggregation condensation, high EC concentration in the size range of 0.56-1 mu m was found at the suburban site. Due to the secondary formation from VOCs, high BrC concentration in the size range of 0.18-0.32 mu m was observed at the industrial site. High EC concentration in the size range of 0.18-0.32 mu m caused by diesel emission was the main reason for the high EC absorption in the regional area. Compared with vehicle emissions, the absorption capacity of secondary BrC was weaker. The variation of MAE values caused by various sources was the key factor leading to BrC absorption, which varied greatly in different regions. This study is helpful to understand the variation of light absorption of carbonaceous component and its source influence in a typical polluted city in the Yangtze River Delta, which provides important data support for the comprehensive evaluation of the role of aerosol light absorption in the change of radiative forcing in different regions.
2022-11-01 Web of ScienceDue to the lack of black carbon (BC) measurement data in some cases, elemental carbon (EC) is often used as a surrogate of BC, with a simple assumption that they are interchangeable. Such assumption will inevitably lead to uncertainties in radiative forcing estimation and health impact assessment. In order to quantitatively and sys-tematically evaluate the relationship between BC and EC as well as factors responsible for their difference, 3-year collocated equivalent BC (eBC) and EC measurements with 1-h resolution were performed in Beijing, China continuously from 2016 to 2019. EBC concentration was measured by the multi-wavelength aethalometer (AE-33) based on optical analysis, while EC concentration was determined by semi-continuous OC/EC analyzer with thermal-optical method. The results showed that around 90% of eBC concentration was higher than that of EC, with average difference between eBC and EC as 1.21 mu g m(-3) (accounting for 33% of average eBC in Beijing). EBC and EC concentrations exhibited strong correlation (r = 0.90) during the whole study period, but the slopes (or eBC/EC ratio) and correlation coefficients varied across seasons (spring: 1.67 and 0.94; summer: 0.91 and 0.65; fall: 1.15 and 0.88; winter: 1.09 and 0.91, respectively). Based on the information from shell/core ratios by Single Particle Soot Photometer (SP2), source apportionment results by positive matrix factorization model, and chemical composition of PM2.5, the differences between eBC and EC concentrations were found to be primarily related to BC aging process and secondary components as evidenced by strong positive correlation with sec-ondary species (e.g., secondary organic carbon and nitrate). This study provided seasonal specific conversion factors of eBC and EC in Beijing and helpful reference for other areas, which will contribute new knowledge of carbonaceous aerosol and reduce uncertainty in assessing future climate change and health studies of BC.
2022-06-01 Web of ScienceThe harmonization of sampling, sample preparation and laboratory analysis methods to detect carbon compounds in snow requires detailed documentation of those methods and their uncertainties. Moreover, intercomparison experiments are needed to reveal differences and quantify the uncertainties further. Here, we document our sampling, filtering, and analysis protocols used in the intercomparison experiment from three laboratories to detect water-insoluble carbon in seasonal surface snow in the high-mountain environment at Kolm Saigurn (47.067842 degrees N, 12.98394 degrees E, alt 1598 m a.s.l.), Austria. The participating laboratories were TU Wien (Austria), the University of Florence (Italy), and the Finnish Meteorological Institute (Finland). For the carbon analysis, the NIOSH5040 and EUSAAR2 protocols of the OCEC thermal-optical method were used. The median of the measured concentrations of total carbon (TC) was 323 ppb, organic carbon (OC) 308 ppb, and elemental carbon (EC) 16 ppb. The methods and protocols used in this experiment did not reveal large differences between the laboratories, and the TC, OC, and EC values of four inter-comparison locations, five meters apart, did not show meter-scale horizontal variability in surface snow. The results suggest that the presented methods are applicable for future research and monitoring of carbonaceous particles in snow. Moreover, a recommendation on the key parameters that an intercomparison experiment participant should be asked for is presented to help future investigations on carbonaceous particles in snow. The work contributes to the harmonization of the methods for measuring the snow chemistry of seasonal snow deposited on the ground.
2022-05-01 Web of ScienceAccurate estimation of black carbon (BC) from the widely used optical attenuation technique is important for the reliable assessment of their climatic impact. The optical instruments use Mass Absorption Cross- (MAC) for converting light attenuation records to BC mass concentrations and Aethalometer is a widely used optical instrument for BC estimation. Several studies have shown large variability in MAC values. It is thus necessary to examine the accuracy and consistency of MAC values obtained using Aethalometer over distinct geographic locations and seasons. In the present study, MAC values are derived using simultaneous observations (2014-2017) from an EC-OC analyzer and an Aethalometer (AE-42) over a high altitude central Himalayan site at Nainital (29.4(o)N, 79.5(o)E, 1958 a.m.s.l). The observations reveal that the annual mean value of MAC (5.03 +/- 0.03 m(2)g(- 1) at 880nm) is significantly lower than the constant value used by the manufacturer (16.6 m(2)g(- 1) at 880nm). The estimated MAC values also showed significant seasonal variation, spanning over a range from 3.7 to 6.6 m(2)g(- 1). It is found that the seasonal variability of elemental carbon (EC), air mass variation and meteorological parameters play an important role in the changes in MAC values over this region. Multi-wavelength determination of MAC shows the contribution of absorption by species other than EC at shorter wavelengths. MAC does not show a clear diurnal variation, unlike EC and absorption coefficient. The slope of EC vs. corrected equivalent black carbon (eBC) showed a significant improvement during all seasons when compared with uncorrected eBC. This lends credibility to the fact that the use of site-specific MAC leads to more reliable estimates of eBC over the central Himalayan region. It is found that, instead of using the site specific MAC value, had we used the one supplied by the instrument, we would have underestimated the radiative forcing by about 7.8Wm(- 2) which amounts to a reduction by 24 %.
2022-02-01 Web of ScienceTotal suspended particles (TSP) were collected in Lumbini from April 2013 to March 2016 to better understand the characteristics of carbonaceous aerosol (CA) concentrations, compositions and sources and their light absorption properties in rural region of severe polluted Indo-Gangetic Plain (IGP). Extremely high TSP (203.9 +/- 109.6 mu g m(-3)), organic carbon (OC 32.1 +/- 21.7 mu g m(-3)), elemental carbon (EC 6.44 +/- 3.17 mu g m(-3)) concentrations were observed in Lumbini particularly during winter and post-monsoon seasons, reflecting the combined influences of emission sources and weather conditions. SO42- (7.34 +/- 4.39 mu g m(-3)) and Ca2+ (5.46 +/- 5.20 mu g m(-3)) were the most dominant anion and cation in TSP. These components were comparable to those observed in urban areas in South and East Asia but significantly higher than those in remote regions over the Himalayas and Tibetan Plateau, suggesting severe air pollution in the study region. Various combustion activities including industry, vehicle emission, and biomass burning are the main reasons for high pollutant concentrations. The variation of OC/EC ratio further suggested that biomass such as agro-residue burning contributed a lot for CA, particularly during the non-monsoon season. The average mass absorption cross- of EC (MAC(EC)) and water-soluble organic carbon (MAC(WSOC)) were 7.58 +/- 3.39 and 1.52 +/- 0.41 m(2) g(-1), respectively, indicating that CA in Lumbini was mainly affected by local emissions. Increased biomass burning decreased MAC(EC); whereas, it could result in high MAC(WSOC) during the non-monsoon season. Furthermore, dust is one important factor causing higher MAC(WSOC) during the pre-monsoon season.
2022-01