This study documents the projected changes in several components (precipitation, runoff, snow cover and depth, soil moisture) of the hydrological cycle in Central-Western Argentina (CWA) based on the simulations from the IPSL-CM6A-LR model for the warming levels proposed in the Paris Agreement. These warming levels represent the future increase in mean annual temperature of 1.5 and 2 degrees C compared to pre-industrial conditions. A novel regional approach, that uses a set of low-emissions shared socioeconomic pathways (SSP) compatible with the Paris Agreement goals, has been applied here for the evaluation of the potential impacts of temperature increase in both the mountainous areas of the Andes and the lowlands on the eastern portion of CWA. Our results show that the timing of reaching the 1.5 degrees C warming level would be between 2032 and 2036 in the CWA lowlands east of the Andes, while this warming level in the Andes mountains of CWA would be 10-15 years earlier as result of the stronger warming with elevation. The higher 2 degrees C warming level would be reached before 2050 in the Andes mountains. Even using the more aggressive mitigation pathways available in the scientific literature (SSP1-1.9 and SSP1-2.6), the IPSL-CM6A-LR model ensemble shows a robust drying signal in the wintertime precipitation over the Andes mountains, which is a concerning result because it implies a reduction of the already scarce water resources draining to the adjacent semi-arid foothills. Our results also show that this drying should be linked to the poleward expansion of the Hadley Circulation. In the lowlands farther east from the Andes, the summertime monsoonal precipitation provides the water resources that are projected to increase under the selected emissions pathways. The expected changes in the analyzed components of the hydrological cycle would be strengthened under the 2 degrees C warming level, particularly the decline of snow amount and surface runoff in the Andes. The results of this study provide insights into the expected impacts of the 1.5 and 2 degrees C warming levels in the CWA regional water resources, which may set the stage for the new discussions of possible options to mitigate them at country and regional levels.
The uncertain, future development of emissions of short-lived trace gases and aerosols forms a key factor for future air quality and climate forcing. The Representative Concentration Pathways (RCPs) only explore part of this range as they all assume that worldwide ambitious air pollution control policies will be implemented. In this study, we explore how different assumptions on future air pollution policy and climate policy lead to different concentrations of air pollutants for a set of RCP-like scenarios developed using the IMAGE model. These scenarios combine low and high air pollution variants of the scenarios with radiative forcing targets in 2100 of 2.6 W m(-2) and 6.0 W m(-2). Simulations using the global atmospheric chemistry and transport model TM5 for the present-day climate show that both climate mitigation and air pollution control policies have large-scale effects on pollutant concentrations, often of similar magnitude. If no further air pollution policies would be implemented, pollution levels could be considerably higher than in the RCPs, especially in Asia. Air pollution control measures could significantly reduce the warming by tropospheric ozone and black carbon and the cooling by sulphate by 2020, and in the longer term contribute to enhanced warming by methane. These effects tend to cancel each other on a global scale. According to our estimates the effect of the worldwide implementation of air pollution control measures on the total global mean direct radiative forcing in 2050 is +0.09 W m(-2) in the 6.0 W m(-2) scenario and -0.16 W m(-2) in the 2.6 W m(-2) scenario. (C) 2013 Elsevier Ltd. All rights reserved.