共检索到 70

CONTEXT: Policy issues in most nations include adapting primary agricultural production to reduce greenhouse gas (GHG) emissions. Commitments have been established through multi-lateral agreements targeting GHG emission reductions to abate climate change impacts. In response to policy initiatives targeted at industries such as agriculture, producers are adopting innovative production methods and technologies to provide environmental services and mitigate emissions. GHG emissions arising from livestock production contribute to a damaging narrative surrounding agriculture, particularly beef production. OBJECTIVE: The purpose of this study is three-fold, quantifying (a) net emissions,2 (b) changes in practice, and (c) economic outcomes attributed to the forage production facet of cow-calf production. METHODS: The Saskatchewan Forage Production Survey was developed to gather forage management practices data, placing emphasis on land use and land management changes. Canada's whole-farm assessment model, Holos, was applied as a carbon accounting framework to derive the net emissions of the forage production cycle. RESULTS AND CONCLUSIONS: Results indicate carbon sequestration increased between the periods of 1991-94 and 2016-19. Gross emissions decreased to a larger degree and net emission results for the forage production facet of the Saskatchewan cow calf sector are -0.123 Mg CO2e/ha/yr in 2016-19. SIGNIFICANCE: Recommendations include the renewal of forage rejuvenation funding programs that may improve forage yields and carbon sequestration potential. Further, the expansion of term conservation easement programs to include non-native forage lands is recommended to incentivize the retention of forage land.

期刊论文 2025-08-01 DOI: 10.1016/j.agsy.2025.104391 ISSN: 0308-521X

Altitude profiles of the mass concentrations of aerosol black carbon (BC) have been obtained,up to an altitude of 12 km, from in situ measurements over Hyderabad (17.47 degrees N, 78.57 degrees E, 557 m amsl;a tropical station in the central Indian peninsula), using three successive high altitude balloon ascents during winter and early summer seasons of 2023-2024. The profiles revealed predominant peaks at around 8 and 11 km, where the BC concentrations were reaching as high as nearly three times the surface concentrations (2.82, 2.76, and 2.60 mu g m-3, respectively), persistently in all the three flights. Detailed analyses using official data of air traffic movement, aviation statistics and emission inventory revealed a strong linkage with the emissions from commercial aircraft that touch Hyderabad and overfly the region. These elevated BC layers will have large implications to atmospheric radiative forcing and possible contributions to modification of the cirrus cloud properties.

期刊论文 2025-06-16 DOI: 10.1029/2024GL113363 ISSN: 0094-8276

Structures constructed on collapsible soil are prone to failure under flooding. Agro-waste like rice husk ash (RHA) and its geopolymer (LGR), consisting of lime (L), RHA, water glass (Na2SiO3), and caustic soda (NaOH), present a potential solution to address this issue. RHA and LGR were mixed up to 16% to improve the collapsible soil. Samples were remolded at optimal water content and maximum dry density for strength and collapsible potential tests. Unconfined compressive strength, deformation modulus, and soaked California bearing ratio exhibit exponential improvement with the inclusion of LGR. Additionally, for comparison of microstructural characteristics, analyses involving energy-dispersive X-ray spectroscopy (EDAX) and scanning electron microscope (SEM) were conducted on both virgin and treated specimens. LGR resulted in the emergence of new peaks of sodium silicates and calcium silicates, as indicated by EDAX. The formation of H-C-A-S gel and H-N-A-S gel observed in SEM suggests the development of bonds among soil particles attributed to geopolymerization. SEM reveals the transformation of the inherent collapsible soil from a dispersed and silt-dominated structure to a reticulated structure devoid of micro-pores following the incorporation of LGR. A numerical model was constructed to forecast the performance of both virgin and stabilized collapsible soils under pre- and post-flooding conditions. The outcomes indicate an enhancement in the soil's bearing capacity upon stabilization with 12% LGR. The implementation of 12% LGR significantly resulted in a lower embodied energy-tostrength ratio, emissions-to-strength ratio, and relatively lower cost-to-strength ratio compared to the soil treated with 16% cement kiln dust (CKD). (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

期刊论文 2025-06-01 DOI: 10.1016/j.jrmge.2024.12.022 ISSN: 1674-7755

The Net Ecosystem Carbon Balance (NECB) is a crucial metric for understanding integrated carbon dynamics in Arctic and boreal regions, which are vital to the global carbon cycle. These areas are associated with significant uncertainties and rapid climate change, potentially leading to unpredictable alterations in carbon dynamics. This mini-review examines key components of NECB, including carbon sequestration, methane emissions, lateral carbon transport, herbivore interactions, and disturbances, while integrating insights from recent permafrost region greenhouse gas budget syntheses. We emphasize the need for a holistic approach to quantify the NECB, incorporating all components and their uncertainties. The review highlights recent methodological advances in flux measurements, including improvements in eddy covariance and automatic chamber techniques, as well as progress in modeling approaches and data assimilation. Key research priorities are identified, such as improving the representation of inland waters in process-based models, expanding monitoring networks, and enhancing integration of long-term field observations with modeling approaches. These efforts are essential for accurately quantifying current and future greenhouse gas budgets in rapidly changing northern landscapes, ultimately informing more effective climate change mitigation strategies and ecosystem management practices. The review aligns with the goals of the Arctic Monitoring and Assessment Program (AMAP) and Conservation of Arctic Flora and Fauna (CAFF), providing important insights for policymakers, researchers, and stakeholders working to understand and protect these sensitive ecosystems.

期刊论文 2025-04-07 DOI: 10.3389/fenvs.2025.1544586

River riparian basins play a crucial role in mitigating greenhouse gas (GHG) emissions through carbon sequestration and nitrogen sinks. However, increased ecological stresses led to the release of CO2, CH4 and N2O. This study aimed to investigate how extreme temperatures, water levels, moisture content, land use changes and soil composition influence GHG emissions in the riparian corridor and to recommend mitigation techniques. It was carried out at the Yangtze River Riparian zone, China, using soil column testing. It used soil column testing. The results showed that extreme temperatures caused the highest emissions of CO2 (29-45%), CH4 (24-43%) and N2O (27-33%). This was due to increased soil temperatures and accelerated organic carbon/nitrogen decomposition. Conversely, control and wet-dry cycles absorbed CO2 (1-3%), CH4 (3-10%) and N2O (1-21%) by improving soil aeration, increased oxygen availability, soil structure, stable water table and low temperature change. Grasses in riparian areas also improved carbon sinks. Highest water levels had lowest gas concentrations and emissions due to low oxygen level. Adaptive wet-dry cycles, grass cover and better water table management can restore riparian areas, maintain soil moisture, balance soil carbon/nitrogen levels and mitigate climate change by improving soil quality. Dissolved organic matter fluorescence (DOMFluor) components are essential for soil carbon dynamics, aquatic biome safety, nutrient cycling and ecological balance in riparian zones. The study recommends implementing restoration practices, managing soil moisture, afforestation, regulating temperature and monitoring water tables to mitigate GHG emissions and address climate change. Future policies should focus on promoting resilient land use and ecosystems.

期刊论文 2025-04-01 DOI: 10.1002/eco.70033 ISSN: 1936-0584

Atmospheric ammonia (NH3) has multiple impacts on the environment, climate change, and human health. China is the largest emitter of NH3 globally, with the dynamic inventory of NH3 emissions remaining uncertain. Here, we use the second national agricultural pollution source censuses, integrated satellite data, 15N isotope source apportionment, and multiple models to better understand those key features of NH3 emissions and its environmental impacts in China. Our results show that the total NH3 emissions were estimated to be 11.2 +/- 1.1 million tonnes in 2020, with three emission peaks in April, June, and October, primarily driven by agricultural sources, which contributed 74% of the total emissions. Furthermore, employing a series of quantitative analyses, we estimated the contribution of NH3 emissions to ecosystem impacts. The NH3 emissions have contributed approximately 22% to secondary PM2.5 formation and a 16.6% increase in nitrogen loading of surface waters, while ammonium deposition led to a decrease in soil pH by 0.0032 units and an increase in the terrestrial carbon sink by 44.6 million tonnes in 2020. Reducing agricultural NH3 emissions in China would contribute to the mitigation of air and water pollution challenges, saving damage costs estimated at around 22 billion US dollars due to avoided human and ecosystem health impacts.

期刊论文 2025-03-06 DOI: 10.1021/acs.est.4c12558 ISSN: 0013-936X

Understanding the dynamics of soil respiration (Rs) in response to freeze-thaw cycles is crucial due to permafrost degradation on the Qinghai-Tibet Plateau (QTP). We conducted continuous in situ observations of Rs using an Li-8150 automated soil CO2 flux system, categorizing the freeze-thaw cycle into four stages: completely thawed (CT), autumn freeze-thaw (AFT), completely frozen (CF), and spring freeze-thaw (SFT). Our results revealed distinct differences in Rs magnitudes, diurnal patterns, and controlling factors across these stages, attributed to varying thermal regimes. The mean Rs values were as follows: 2.51 (1.10) mu mol center dot m(-2)center dot s(-1) (CT), 0.37 (0.04) mu mol center dot m(-2)center dot s(-1) (AFT), 0.19 (0.06) mu mol center dot m(-2)center dot s(-1) (CF), and 0.68 (0.19) mu mol center dot m(-2)center dot s(-1) (SFT). Cumulatively, the Rs contributions to annual totals were 89.32% (CT), 0.79% (AFT), 5.01% (CF), and 4.88% (SFT). Notably, the temperature sensitivity (Q10) value during SFT was 2.79 times greater than that in CT (4.63), underscoring the significance of CO2 emissions during spring warming. Soil temperature was the primary driver of Rs in the CT stage, while soil moisture at 5 cm depth and solar radiation significantly influenced Rs during SFT. Our findings suggest that global warming will alter seasonal Rs patterns as freeze-thaw phases evolve, emphasizing the need to monitor CO2 emissions from alpine meadow ecosystems during spring.

期刊论文 2025-02-01 DOI: 10.3390/land14020391

Rationale. Glaciers in the Tibetan Plateau (TP), especially in the Himalayas, are retreating rapidly due to rising air temperature and increasing anthropogenic emissions from nearby regions. Traditionally, pollutants deposited on the glaciers have been assumed to originate from long-range transport from its outside. Methodology. This study investigated the concentrations of black carbon (BC) and major ions in snowpit samples collected from two glaciers in the south-eastern TP (Demula and Palongzangbu) and one glacier in the west Himalayas (Jiemayangzong). The radiative forcing of BC was calculated based on BC concentration and glacier characteristics. Results. The results revealed that the BC/Ca2+ concentration ratio in snowpit samples from Palongzangbu, located near residential villages, is similar to 2.05 times higher than that of Demula, which is mainly influenced by long-range transported pollutants. Furthermore, on Jiemayangzong glacier, snowpit samples collected with 100-m vertical resolution exhibited that BC-induced radiative forcings at low altitude are similar to 2.37 +/- 0.16 times greater than those at high altitude. Discussion. These findings demonstrated that in addition to long-range transport, emissions from local residents also make substantial contributions to BC and certain major ions (e.g. SO42-). To accurately assess the sources and radiative forcing of BC and other light-absorbing impurities on glaciers of the TP, it is necessary to consider the impact of local populations and altitude-dependent variations.

期刊论文 2025-01-01 DOI: 10.1071/EN24093 ISSN: 1448-2517

Traditional soil stabilization methods have been used for many years to improve the load-bearing capacity, durability, and erosion resistance of soil; however, they have some potential drawbacks including air and water pollution, and increased energy consumption. The most used stabilizer, cement considered for its performance and cost-effectiveness is responsible for approximately 5-7% of total carbon dioxide (CO2) emissions worldwide. But nowadays, the global trend incorporates sustainability goals while choosing appropriate soil stabilization. In this direction, various sustainable stabilizers, such as enzymes, and pozzolanas have gained significant attention in recent years. This study explores using a calcium-based mineral stabilizer and GGBS, a byproduct of Iron furnace, as a potential alternative to cement in soil stabilization for flexible pavement construction. The main objective of the paper is to evaluate the mechanical properties of the stabilized soils using CBR followed by the designing of pavements and a comparative life cycle assessment of cement-stabilized flexible pavement construction with mineral-stabilized pavement in SimaPro software, with a cradle-to-gate approach, using the ReCiPe 2016 Endpoint (H) method. The scope of the study is to provide insights into the feasibility and environmental impacts of using mineral stabilizers for soil stabilization in pavement construction. The study's findings indicate that the pozzolanic reaction during the stabilization process played a crucial role in enhancing the CBR values. This improvement led to a reduction in pavement thickness, highlighting that mineral-stabilized pavements demonstrate lower energy requirements and reduced greenhouse gas emissions thus serving as a viable and sustainable choice for pavement construction.

期刊论文 2025-01-01 DOI: 10.1007/978-3-031-70281-5_60 ISSN: 2211-0844

Thirty-two% of European soils are thought to suffer soil structural damage by compaction. Temperate agricultural grasslands are particularly vulnerable. Larger vehicles, coupled with extended periods of grazing, and greater soil moisture, result in soil compaction: a component of poor soil health. This reduction in soil health reduces yields and increases emissions of nitrous oxide (N2O) from N application. As grass swards are not tilled regularly, mechanical improvement of structure is restricted. We assessed two non-inversion methods of grassland soil alleviation: mechanical slitting of the surface and shallow soil lifting. These were tested on two contrasting soils (sandy, free draining and silty clay loam, imperfectly drained) for dry matter (DM) yields over three annual silage cuts and emissions of N2O. Alleviation decreased soil bulk density, especially for the clay soil, but gave limited improvement in yield; as the sward lifter reduced the first cut DM yield for both soil types. N2O emissions were enhanced by alleviation, especially, the sandier soil, up to 94% more than the uncompacted control with implications for the potential short-term release of N2O from grassland, (up to 243 kg) associated with improvements to the physical aspects of soil health, for a 150 ha dairy farm.

期刊论文 2025-01-01 DOI: 10.1007/978-981-96-1132-4_7 ISSN: 2352-4774
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 末页
  • 跳转
当前展示1-10条  共70条,7页