Drought stress is becoming a structural phenomenon in cropping systems challenged by climate change and soil fertility degradation. A balanced fertilization strategy based on nitrogen, phosphorus, and potassium as well as on silicon supplementation was tested as an efficient practice to improve maize tolerance to short-term drought stress. Three fertilization strategies (control: treatment with zero NPK fertilizer application; NPK: granular NPK fertilizer, and NPK + Si: granular NPK fertilizer enriched with 5% silicon) were evaluated under three irrigation regimes simulating three probable water deficit levels in the Mediterranean climate (I1, well-watered conditions: 80% of soil field capacity; I2, medium drought stress: 60% of soil field capacity; and I3, severe drought stress: 30% of soil field capacity). Drought stress was applied at V10 growth stage of maize and maintained for 15 days, then plants were rewatered according to the optimal irrigation regime. Results showed that medium and severe drought stress down-regulated maize plant growth and yield, especially under nutrient deficient conditions (control). Plants amended with NPK and NPK + Si recorded higher chlorophyll a pigment content (+ 22 to + 64%), stomatal conductance (+ 6 to 24%), and leaf relative water content (+ 7 to 23%) than those of the control, depending on the drought stress level. Silicon supplementation attenuated the down-regulation effects of drought stress on maize photosynthesis and biomass accumulation by improving stomatal conductance and electron transfer efficiency between PSII and PSI. Silicon supply improved the performance index for energy conservation from photons absorbed by PSII to the reduction of intersystem electron acceptors (PIabs) and reduced the dissipation energy flux (DIo/RC), responsible for the protection of PSII from photo-damage under drought stress, which resulted in significant enhancement of maize photosynthesis recovery and grain yield (+ 59 to 69%). Findings from the present study demonstrate that granular NPK-fertilizer fortified with silicon could be an efficient strategy to increase maize photosynthesis performance, plant growth, and productivity under short-term drought stress conditions.