共检索到 7

Freeze-thaw cycles coupled with sulfate attack represent one of the most challenging service environments for concrete. This study aims to enhance the durability of concrete materials in environments characterized by sulfate attack and severe freeze-thaw conditions. Specifically, it investigates the deterioration laws and evolution models of mortar materials containing silica fume under both freeze-thaw and coupled freeze-thaw/sulfate attack conditions. Mortar specimens with varying silica fume contents (0%, 6%, 8%, and 10%) were prepared and subjected to single freeze-thaw and coupled freeze-thaw-sulfate attack tests to examine the impact of different silica fume dosages on the durability of mortar materials under these harsh conditions. Additionally, a quantitative assessment model for damage evolution was established using the entropy weight method and Wiener process model. The research findings indicate that silica fume significantly enhances the sulfate resistance and freeze-thaw durability of mortar materials, with an optimal dosage of 10%. Within the scope of this study, higher silica fume content results in a greater number of sulfate attack-freeze-thaw cycles the mortar can endure before damage and failure, thereby extending its service life. Based on the Wiener stochastic process damage model and field data, it is predicted that the service life of mortar containing 10% silica fume increases most notably to 36.6 years, representing a relative improvement of 45.8 % compared to mortar without silica fume. These results provide valuable references and guidance for the design and construction of concrete structures in regions characterized by high-cold temperatures and salt- corrosive soils.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04349 ISSN: 2214-5095

Multi-source precipitation products (MSPs) are critical for hydrologic modeling, but their spatial and temporal heterogeneity and uncertainty present challenges to simulation accuracy that need to be addressed urgently. This study assessed the impact of different precipitation data sources on hydrologic modeling in an arid basin. There were seven precipitation products and meteorological station interpolated data that were used to drive the hydrological model, and we evaluated their performance by fusing the six precipitation products through the dynamic bayesian averaging algorithm. Ultimately, the runoff simulation uncertainty was quantified based on the DREAM algorithm, and the information transfer entropy was used to quantify the differences in hydrologic simulation processes driven by different precipitation data. The results showed that CMFD and ERA5 weights were higher, and the DBMA fused precipitation annual mean value was about 309.83 mm with good simulation accuracy (RMSE of 1.46 and R-2 of 0.75). The simulation was satisfactory (NSE >0.80) after parameter calibration and data assimilation for all driving data, with CHIRPS and TRMM performed better in the common mode, and HRLT and CMFD performed excellently in the glacier mode. The DREAM algorithm indicated less uncertainty for DBMA, CHIRPS and HRLT data. The entropy of information transfer revealed that precipitation occupied a significant position in information transfer, especially affecting evapotranspiration and surface soil moisture. CMFD and TPS CMADS were highest in snow water equivalent information entropy, and CHIRPS and TPS CMADS were highest in evapotranspiration information entropy. CDR, CHIRPS, ERA5-Land and IDW STATION had the highest snow water equivalent information entropy, DBMA and CMORPH had the highest runoff information entropy, CHIRPS and TRMM had the highest soil moisture information entropy, whereas ERA5, HRLT, and TPS CMADS had the highest evapotranspiration information entropy in glacial mode. This study reveals significant differences between different precipitation data sources in hydrological modeling of arid basin, which is an important reference for future water resources management and climate change adaptation strategies.

期刊论文 2025-04-01 DOI: 10.1016/j.envsoft.2025.106376 ISSN: 1364-8152

The relevance between microstructure and anti-corrosion performance of FeCoNi HEA prepared with different cooling methods was studied in simulated Golmud salinized soil solution. The results reveal that the corrosion rate reduces with increasing cooling rate, and the water-cooling HEA has the best anti-corrosion performance, followed by the air-cooling and furnace-cooled samples, which mainly depends on the grain size and the protectiveness of passivation film. An increase in grain size weakens the micro-galvanic corrosion effect between the grain boundary and the internal grain. Moreover, compact and uniform passive film markedly improves the anti-corrosion performance of water-cooled HEA. Combined with electrochemical tests, the water-cooling HEA exhibits the lowest sensitivity of metastable and stable pitting, as well as its surface passive film possesses excellent self-repairing ability. In addition, the HEA substrate occurs the preferential dissolution of Ni element.

期刊论文 2025-04-01 DOI: 10.1007/s11665-024-09626-w ISSN: 1059-9495

Flood is among the most disastrous natural disasters since they are responsible for massive damage to infrastructure, severe fatalities and injuries, innumerable economic losses, and social disruptions worldwide. These damages caused by floods have been worsening in recent years worldwide because of environmental degradation, climatic change, and high-speed urbanization. A rising precipitation rate increases the chances of floods in flood-vulnerable areas. A flash flood is a rapid flooding of geomorphic low-lying regions caused by remarkably high rainfall in a short duration. On September 23rd, 2023 a flooding event in the Nagpur, Maharashtra, it is directly impact on the human death and economic loss entire city. In the present study, the change in the dynamics of Nagpur city was analysed by employing remote sensing and GIS techniques to assess the change in the land use and land cover patterns. Landsat imagery of year 2000, 2010, 2020, and 2023 was used for land use and land cover classification. This analysis reveals that there is an increase in built-up area from 72.85 sq. km in year 2000 to 185.4 sq. km in year 2023. The built up land is increased this changes where directly affects the infiltration rate of rainwater into the soil. The total area covered by water bodies is reduced to 2.29 sq. km in 2023 which were 12.2 sq. km in year 2000. It is indicates the encroachment of built-up land on the water bodies. On the day of flash flood occurrence, it was observed that Nagpur city received 145 mm rainfall which is highest in the month of September, 2023. The Shannon entropy model was used to estimate the population dynamics and growth patterns of Nagpur city. Higher entropy values were obtained during the analysis which indicates the rapid transformation of city in all directions. Population dynamics of Nagpur city also indicate the inflation in population from 4,067,637 in 2000 to 4,653,570 in 2010. The SAR water index was calculated using Google Earth Engine to detect the water surges in residential areas during the flood. Precautionary measures should be taken by governing authorities to avoid such disasters. Proper city planning and improvements in drainage systems are recommended within the city. It is needed for an hour to develop a river monitoring system and early warning system, as well as preventive measures that should be implemented, like the construction of retaining walls to control the flood water.

期刊论文 2025-02-10 DOI: 10.1038/s41598-025-86801-6 ISSN: 2045-2322

Groundwater constitutes a vital resource for public water supply, and thus, it is imperative to recognize the areas of highest potential for increasing availability. The present study employs the MaxEnt model to discern the most favorable areas for locating high -yield wells in Caxias do Sul, Rio Grande do Sul, southern Brazil, where the Serra Geral Aquifer System, a fractured volcanic aquifer, emerges. This aquifer system is characterized by its heterogeneous, discontinuous, and highly anisotropic nature. A dataset comprising 83 wells with high flow rates (>= 10 m3/h) was selected from the municipal registry of deep tubular wells, along with 14 factors that influence groundwater occurrence (specific capacity, transmissivity, altitude, slope, horizontal curvature, vertical curvature, relief dis index, drainage density, distance to drainage, topographic wetness index, distance to lineament, lineament density, precipitation, and soil hydrological group). The model output was a Groundwater Potential Map, which stochastically expresses the probability of obtaining flow rates >= 10 m3/h. The map was validated through cross -validation, resulting in an average accuracy of 65.14%, and by the Receiver Operating Characteristic analysis, resulting in an Area Under the Curve value of 0.911, indicating satisfactory validation. While the MaxEnt model is widely used in ecology to model species distribution, its application in groundwater prediction remains limited, particularly in fractured aquifers associated with volcanic rocks. Apart from optimizing the use of groundwater resources, this study also enhances the understanding of natural phenomena in this type of aquifer.

期刊论文 2024-03-01 DOI: 10.1016/j.jsames.2024.104794 ISSN: 0895-9811

High-resolution permafrost mapping is an important direction in permafrost research. Arxan is a typical area with permafrost degradation and is situated on the southern boundary of the permafrost region in Northeast China. With the help of Google Earth Engine (GEE), the maximum entropy classifier (MaxEnt) is used for permafrost mapping using the land surface temperature (LST) of different seasons, deviation from mean elevation (DEV), solar radiation (SR), normalized difference vegetation index (NDVI), and normalized difference water index (NDWI) as the characteristic variables. The prior data of permafrost distribution were primarily based on 201 borehole data and field investigation data. A permafrost probability (PP) distribution map with a resolution of 30 m was obtained. The receiver operating characteristic (ROC) curve was used to test the distribution results, with an area under the curve (AUC) value of 0.986. The results characterize the distribution of permafrost at a high resolution. Permafrost is mainly distributed in the Greater Khingan Mountains (GKM) in the research area, which run from the northeast to the southwest, followed by low-altitude area in the northwest. According to topographic distribution, permafrost is primarily found on slope surfaces, with minor amounts present in peaks, ridges, and valleys. The employed PP distribution mapping method offers a suggestion for high-resolution permafrost mapping in permafrost degradation areas.

期刊论文 2023-10-01 DOI: 10.3390/app131910692

In this study, the instability of extreme temperatures is defined as the degree of perturbation of the spatial and temporal distribution of extreme temperatures, which is to show the uncertainty of the intensity and occurrence of extreme temperatures in China. Based on identifying the extreme temperatures and by analyzing their variability, we refer to the entropy value in the entropy weight method to study the instability of extreme temperatures. The results show that TXx (annual maximum value of daily maximum temperature) and TNn (annual minimum value of daily minimum temperature) in China increased at 0.18 degrees C/10 year and 0.52 degrees C/10 year, respectively, from 1966 to 2015. The interannual data of TXx' occurrence (CTXx) and TNn' occurrence (CTNn), which are used to identify the timing of extreme temperatures, advance at 0.538 d/10 year and 1.02 d/10 year, respectively. In summary, extreme low-temperature changes are more sensitive to global warming. The results of extreme temperature instability show that the relative instability region of TXx is located in the middle and lower reaches of the Yangtze River basin, and the relative instability region of TNn is concentrated in the Yangtze River, Yellow River, Langtang River source area and parts of Tibet. The relative instability region of CTXx instability is distributed between 105 degrees E and 120 degrees E south of the 30 degrees N latitude line, while the distribution of CTNn instability region is more scattered; the TXx's instability intensity is higher than TNn's, and CTXx's instability intensity is higher than CTNn's. We further investigate the factors affecting extreme climate instability. We also find that the increase in mean temperature and the change in the intensity of the El Nino phenomenon has significant effects on extreme temperature instability.

期刊论文 2022-10-01 DOI: http://dx.doi.org/10.3390/atmos13010019
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-7条  共7条,1页