共检索到 2

The frequent outbreaks of European spruce bark beetle Ips typographus (L.) have destroyed huge amounts of Norway spruce Picea abies (L.) forests in central and Northern Europe. Identifying the risk factors and estimating the damage level is important for strategic damage control. The risk factors of forest damage by spruce bark beetles have mostly been analyzed on the landscape scale, while the in-stand risk factors have been less investigated. This study aims at exploring the local-scale risk factors in a flat area with spruce-dominated forest in southern Sweden. The investigated factors include four abiotic factors, i.e., soil wetness, solar radiation, slope gradient, and aspect, and three biotic factors, i.e., the number of deciduous trees and trees that died from attacks in previous years that remained (TreesLeft) and removed (TreesRemoved) from the forest stand. We put up 24 pheromone bags in six stands attacked by bark beetle in the previous years, resulting in different numbers of infested trees in each plot. We explored in which microenvironment a pheromone bag resulted in more colonization, the impact radius of each factor, and the necessary factors for a risk model. The environmental factors were obtained from remote sensing-based products and images. A generalized linear model (GLM) was used with the environmental factors as the explanatory variables and the damage levels as the response variables, i.e., the number of attacked trees for the plot scale, and healthy/infested for the single-tree scale. Using 50 m and 15 m radius of the environmental factors resulted in the best fit for the model at plot and individual tree scales, respectively. At those radii, the damage risk increased both at plot and individual tree level when spruce were surrounded by more deciduous trees, surrounded by dead trees that had been removed from the forest, and spruces located at the north and east slopes (315 degrees-135 degrees of aspect, > 2 degrees slope). Soil wetness, solar radiation, and remaining standing dead trees in the surrounding did not significantly impact the damage level in the microenvironment of the study area. The GLM risk model yielded an overall accuracy of 0.69 in predicting individual trees being infested or healthy. Our efforts to investigate the risk factors provide a context for wall-to-wall mapping in-stand infestation risks, using remote sensing-based data.

期刊论文 2024-06-01 DOI: 10.1007/s10342-024-01662-4 ISSN: 1612-4669

Disturbances caused by the European spruce bark beetle (SBB; Ips typographus L.) on Norway spruce ( Picea abies (L.) H. Karst.), have increased immensely across Central and Northern Europe, and are expected to increase further as a result of climate change. While this trend has been noted in Finland, so far limited research has been published. To support proper SBB risk management in Finland, we compared stand properties between salvage loggings due to SBB damage during 2012-2020 (4691 cases) and spruce stands free of SBB damage. Also, we explored the role of landscape attributes as drivers of SBB damage. We considered the forest stand attributes of site fertility class, stand development class, soil type, stand mean diameter at breast height and mean stand age. Considered forest landscape attributes were the distance from SBB-damaged stands to the closest clear-cut, to previous -year SBB-damaged stands and to the previous -year wind -damaged stand. We used nationwide forest logging and forest stock data, and analysed forest stand attributes using Chi -squared and Mann -Whitney U tests and landscape attributes using generalised linear mixed models. Based on our findings, the SBB didn't damage stands randomly, but prevailed in mature stands (high age and high mean diameter at breast height), in herb -rich heath forest site types and in semi -coarse or coarse heath forest soil soils. We found correlation between the landscape variables and the number of salvage loggings, with a higher number of loggings due to SBB damage close to clear -cuts. Our results help to find risk areas of SBB damage.

期刊论文 2024-01-01 DOI: 10.14214/sf.23069 ISSN: 0037-5330
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页