Elevation plays a crucial role in modulating the spatiotemporal distributions of climatic variables in mountainous regions, which affects water and energy balances, among which reference evapotranspiration (ET0) is a key hydrological indicator. However, the response of ET0 to climate change with elevation continues to be poorly understood, especially in the Tibetan Plateau (TP) which has elevation variations of more than 4,000m. The spatiotemporal variations of ET0 with elevation were investigated using long-term (1960-2017) meteorological observations from 82 stations on the TP. The results suggest that the average annual ET0 showed an insignificant increasing trend. A significant negative correlation between ET0 and elevation was found (p<.01). The positive trends of ET0 decreased with elevation, whereas the negative trends of ET0 increased significantly with elevation (p<.05). The magnitude of trends of ET0 becomes smaller at higher-elevation stations. Sensitivity analysis indicated that ET0 was most sensitive to shortwave radiation (R-s). Moreover, the sensitivities of temperature (T) and wind speed (U) significantly decreased with elevation, whereas those of R-s and vapour pressure deficit (VPD) increased slightly with elevation. The contribution and path analyse indicated that increasing VPD was the dominant contributor to the increase in ET0. The effect of elevation on ET0 variation mainly depended on the tradeoff between the contributions of U and VPD. U was the largest contributing factor for the change in ET0 below 2,500m, whereas VPD was the primary contributor to the increase in ET0 above 2,500m. This study provides insights into the response of ET0 to climate change with elevation on the TP, which is of great significance to hydrometeorological processes in high-altitude regions.
2024-09-15The retreat of glaciers has altered hydrological processes in cryospheric regions and affects water resources at the basin scale. It is necessary to elucidate the contributions of environmental changes to evapotranspiration (ET) variation in cryospheric-dominated regions. Considering the upper reach of the Shule River Basin as a typical cryospheric-dominated watershed, an extended Budyko framework addressing glacier change was constructed and applied to investigate the sensitivity and contribution of changes in environmental variables to ET variation. The annual ET showed a significant upward trend of 1.158 mm yr(-1) during 1982-2015 in the study area. ET was found to be the most sensitive to precipitation (P), followed by the controlling parameter (w), which reflects the integrated effects of landscape alterations, potential evapotranspiration (ET0), and glacier change ( increment W). The increase in P was the dominant factor influencing the increase in ET, with a contribution of 112.64%, while the decrease in w largely offset its effect. The contributions of P and ET0 to ET change decreased, whereas that of w increased when considering glaciers using the extended Budyko framework. The change in glaciers played a clear role in ET change and hydrological processes, which cannot be ignored in cryospheric watersheds. These findings are helpful for better understanding changes in water resources in cryospheric regions.
2024-08While the direct impact of climate change on reference evapotranspiration (ET0) has been extensively studied, there is limited research on the indirect impact resulting from the interaction between climatic variables. This gap hinders a comprehensive understanding of climate change effects on ET0. Additionally, there is scarce exploration into the quantitative effect of freeze-thaw cycles on ET0 variation. In this study, we employed path analysis and dependent variable variance decomposition methods to discern the direct and interactive effects of climatic variables on ET0 in the Tibetan Plateau from 1960 to 2022. Annual ET0 exhibited variation across basins, with the coefficient of variability during the thawed period smaller than that during the non-thawed period. On an annual scale, the largest contribution to ET0 variation came from water vapor pressure deficit (VPD) at 47.7%. This contribution was amplified by its coupled interaction with temperature (T) at 47.1%, although the contribution was partially offset by the interactive effects of VPD with downward shortwave radiation and wind speed at -2.4% and - 27.6%, respectively. During different freezing-thawing periods, VPD primarily controlled ET0 variation, with its interaction with other climatic variables enhancing its impact. Furthermore, soil moisture, influenced by freeze-thaw cycles, exhibited a strong correlation with T and VPD, indicating the significant effect of freeze-thaw cycles on ET0 variation. The weak correlation between ET0 and NDVI suggested that vegetation growth had a limited regulatory effect on ET0. These findings provide valuable insights into the impact of interactions between climatic variables on hydrological processes, enhancing our understanding of the interactive roles of hydrometeorological variables.
2024-08-01 Web of ScienceEstimation of evapotranspiration (ETa) change on the Tibetan Plateau (TP) is essential to address the water requirement of billions of people surrounding the TP. Existing studies have shown that ETa estimations on the TP have a very large uncertainty. In this article, we discuss how to more accurately quantify ETa amount and explain its change on the TP. ETa change on the TP can be quantified and explained based on an ensemble mean product from climate model simulations, reanalysis, as well as ground-based and satellite observations. ETa on the TP experienced a significant increasing trend of around 8.4 +/- 2.2 mm (10 a)-1 (mean +/- one standard deviation) during 1982-2018, approximately twice the rate of the global land ETa (4.3 +/- 2.1 mm (10 a)-1). Numerical attribution analysis revealed that a 53.8% TP area with the increased ETa was caused by increased temperature and 23.1% part was due to soil moisture rising, because of the warming, melting cryosphere, and increased precipitation. The projected future increase in ETa is expected to cause a continued acceleration of the water cycle until 2100. (c) 2024 Science China Press. Published by Elsevier B.V. and Science China Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
2024-06-30 Web of ScienceSatellite observations have shown widespread greening during the last few decades over the northern permafrost region, but the impact of vegetation greening on permafrost thermal dynamics remains poorly understood, hindering the understanding of permafrost-vegetation-climate feedbacks. Summer surface offset (SSO), defined as the difference between surface soil temperature and near-surface air temperature in summer (June-August), is often predicted as a function of surface thermal characteristics for permafrost modeling. Here we examined the impact of leaf area index (LAI), detected by satellite as a proxy to permafrost vegetation dynamics, on SSO variations from 2003 to 2021 across the northern permafrost region. We observed latitude- and biome-dependent patterns of SSO changes, with a pronounced increase in Siberian shrublands and a decrease in Tibetan grasslands. Based on partial correlation and sensitivity analyses, we found a strong LAI signal (similar to 30% of climatic signal) on SSO with varying elevation- and canopy height-dependent patterns. Positive correlations or sensitivities, that is, increases in LAI lead to higher SSO, were distributed in relatively cold and wet areas. Biophysical effects of permafrost greening on surface albedo, evapotranspiration, and soil moisture (SM) could link the connection between LAI and SSO. Increased LAI substantially reduced surface albedo and enhanced evapotranspiration, influenced energy redistribution, and further controlled interannual variability of SSO. We also found contrasting effects of LAI on surface SM, consequently leading to divergent impacts on SSO. The results offer a fresh perspective on how greening affects the thermal balance and dynamics of permafrost, which is enlightening for improved permafrost projections. Climate change has caused substantial vegetation growth that was detected by satellite observations (greening) over northern permafrost regions. However, the consequences or feedbacks of vegetation greening remain largely unknown, hindering the understanding of near-surface thermal dynamics and bringing considerable uncertainty in model projections. Here we aimed to decipher the biophysical impact of permafrost greening on the summer surface offset (SSO), which is an indicator of permafrost degradation. We found latitude- and biome-dependent patterns of SSO changes and divergent responses of SSO to greening. Increases in satellite-observed leaf area index lead to higher SSO in relatively cold and wet areas but lower SSO in warm-dry regions. Biophysical mechanisms associated with surface albedo, evapotranspiration, and SM can help explain various effects of greening on SSO. Our results highlight greening feedbacks on the thermal dynamics of permafrost with climate warming, calling for the improvement of current projections. Vegetation greening impacts the thermal dynamics of permafrost surface Biophysical effects of greening on surface offset could be related to surface albedo, evapotranspiration, and soil moisture
2024-06-01 Web of ScienceChanges are projected for the boreal biome with complex and variable effects on forest vegetation including drought-induced tree mortality and forest loss. With soil and atmospheric conditions governing drought intensity, specific drivers of trees water stress can be difficult to disentangle across temporal scales. We used wavelet analysis and causality detection to identify potential environmental controls (evapotranspiration, soil moisture, rainfall, vapor pressure deficit, air temperature and photosynthetically active radiation) on daily tree water deficit and on longer periods of tree dehydration in black spruce and tamarack. Daily tree water deficit was controlled by photosynthetically active radiation, vapor pressure deficit, and air temperature, causing greater stand evapotranspiration. Prolonged periods of tree water deficit (multi-day) were regulated by photosynthetically active radiation and soil moisture. We provide empirical evidence that continued warming and drying will cause short-term increases in black spruce and tamarack transpiration, but greater drought stress with reduced soil water availability. This research explores how climate change could impact the water stress experienced by black spruce and tamarack trees in the western boreal forest of Canada. We focused on a key measure called tree water deficit to understand if the trees were under stress due to insufficient water. We examined how tree water deficit relates to environmental factors such as temperature, sunlight, and soil moisture. The findings revealed that, on a daily basis, factors like sunlight and temperature cause trees to release more water into the air. However, over longer periods (days to weeks), the amount of water in the soil becomes crucial, suggesting that trees might face water stress during dry spells. So, while trees could grow more on hotter, sunnier days, they could also experience water stress and reduced growth if the soil becomes too dry for an extended period. This study helps us grasp how various factors interact to influence tree water stress in the boreal forest, providing insights important for managing these ecosystems in a changing climate. A novel approach to determine environmental controls of tree water deficit across time scales with wavelet analysis and Granger causality Soil moisture emerges as a significant control of tree water deficit in boreal trees at longer scales (multi-days) Daily productivity gains with warming will be mitigated by decreased soil water availability in longer periods of tree water deficit
2024-04-28 Web of ScienceStudy region: The Tibetan Plateau Study focus: Evapotranspiration (ET) plays a critical role in the water balance, energy budget, and carbon cycle. However, the variations, trends, and controls of ET on the Tibetan Plateau (TP) are poorly understood because of uncertainties in ET estimates and sparse observations. In this study, the variations in ET and its components and their drivers and controls in the TP were analyzed at seasonal and annual scales during 1982-2015. New hydrological insights for the region: Spatially, the multiyear mean annual ET decreased from the southeastern to northwestern TP. Canopy transpiration (Ec) was the main component of ET (52.7%), followed by soil evaporation (Es) (34.4%) and interception (Ei) (10.7%). Regionally, the averaged ET and its components increased significantly at the seasonal and annual scales. Spatially, the controlling factor for ET changed from water to energy as the climatic zones transferred from aridity to humidity. The annual ET was controlled by soil moisture (SM) in arid and semi-arid zones, whereas Ta was the dominant factor in the other regions. The increased annual Es and Ei were primarily caused by SM, while the annual Ec was determined by Ta. In addition, NDVI played a certain role in regulating the annual Ec and Ei variations. This study improves our understanding of hydrological processes and water resource management under global climate change.
2024-03The Qinghai-Tibet Plateau (QTP), known as the Earth's third pole, is highly sensitive to climate change. Various environmental degradation has occurred due to the effects of climate warming such as the degradation of permafrost and the thickening of active layers. Evapotranspiration, as a key element of hydrothermal coupling, has become a key factor of the plateau environment for deciphering deterioration, and the FAO P-M model has a good physical foundation and simple model data requirements as a primary tool to study the plateau evapotranspiration. There has been a large research base, but the estimation of evapotranspiration in alpine regions is still subject to many uncertainties. This is reflected in the fact that the classification of underlying surface types has not been sufficiently detailed and the evapotranspiration characteristics of some special underlying surface types are still unclear. Therefore, in this work, we modified the FAO P-M coefficients based on the characteristics of actual evapotranspiration measured by the Eddy covariance system and the key influencing factors to better simulate the actual evapotranspiration in alpine swamp meadow. The results were as follows: (1) Both ETa measured by the Eddy covariance system and ET0 calculated by FAO P-M showed the same trend at the daily and annual scales and hysteresis was confirmed to exist, so the error caused by hysteresis should be considered in further research. (2) The annual ETa was 566.97 mm and annual ETa/P was 0.76, and about 11.19% of ETa occurred during the night. The ETa was 2.15 during the non-growing seasons, implying that a large amount of soil water was released into the air by evapotranspiration. (3) The evapotranspiration characteristics of alpine swamp meadow are formed under the following conditions: control of net radiation (R-n) affected by VPD during the growing season and affected by soil temperature and humidity during the non-growing season. Precipitation and soil water content are no longer the main controlling factors of evapotranspiration during the growing season at the alpine swamp meadow as the volume soil water content tends to saturate. (4) The basic corrected K-c was 1.14 during the initial and mid-growing season, 1.05 during the subsequent growing season, and 0-0.25 during the non-growing season, and the correction factor process can also provide ideas for correcting the K-c of other vegetation.
2023-10-15Actual evapotranspiration (ETa) is important since it is an important link to water, energy, and carbon cycles. Approximately 96% of the Qinghai-Tibet Plateau (QTP) is underlain by frozen ground, however, the ground observations of ETa are particularly sparse-which is especially true in the permafrost regions-leading to great challenge for the accurate estimation of ETa. Due to the impacts of freeze-thaw cycles and permafrost degradation on the regional ET process, it is therefore urgent and important to find a reasonable approach for ETa estimation in the regions. The complementary relationship (CR) approach is a potential method since it needs only routine meteorological variables to estimate ETa. The CR approach, including the modified advection-aridity model by Kahler (K2006), polynomial generalized complementary function by Brutsaert (B2015) and its improved versions by Szilagyi (S2017) and Crago (C2018), and sigmoid generalized complementary function by Han (H2018) in the present study, were assessed against in situ measured ETa at four observation sites in the frozen ground regions. The results indicate that five CR-based models are generally capable of simulating variations in ETa, whether default and calibrated parameter values are employed during the warm season compared with those of the cold season. On a daily basis, the C2018 model performed better than other CR-based models, as indicated by the highest Nash-Sutcliffe efficiency (NSE) and lowest root mean square error (RMSE) values at each site. On a monthly basis, no model uniformly performed best in a specific month. On an annual basis, CR-based models estimating ETa with biases ranging from -94.2 to 28.3 mm year(-1), and the H2018 model overall performed best with the smallest bias within 15 mm year(-1). Parameter sensitivity analysis demonstrated the relatively small influence of each parameter varying within regular fluctuation magnitude on the accuracy of the corresponding model.
2023-04To explore the effects of mattic epipedon (ME) on soil moisture and hydraulic properties in the alpine meadow of three-river source region, the soil moisture, water infiltration, evapotranspiration, soil bulk density and soil water holding capacity of original vegetation (OV), light degradation (LD), moderate degradation (MD) and severe degradation (SD) was conducted in this study, respectively. The results showed that: (1) the alpine meadow degradation reduced the soil moisture in the shallow layer (0-10 cm) and had no significant effects on the soil moisture in the deep layer (20-30 cm). (2) The effects of alpine meadow degradation on infiltration was depend on the presence of ME or not, when the ME existed on the land surface (from OV treatment to MD treatment), the alpine meadow degradation had no significant effects on infiltration. Once the ME disappeared on the land surface (from MD treatment to SD treatment), the alpine meadow degradation mainly increased the infiltration. (3) With the aggravation of alpine meadow degradation, the daily evapotranspiration first decreased and then significantly increased when the gravimetric soil water content at 0-5 cm in SD treatment (GWC5) was exceeded 19.5%, the daily evapotranspiration gradually decreased when GWC5 ranged from 9.3% to 19.5%, and had no significant changes on the evapotranspiration when GWC5 was less than 9.3%. Considering the characteristics of precipitation in alpine meadow, it was concluded that the alpine meadow degradation accelerated the evapotranspiration during the plant-growing season. (4) The effect of alpine meadow degradation on soil bulk density and saturated water capacity was concentrated at 0-10 cm. With the aggravation of alpine meadow degradation, the bulk density at 0-10 cm was first stable and then significantly increased and the saturated water capacity at 0-10 cm was first gradually increased and then significantly decreased. Our results suggested that the ME is vital for water conservation of alpine meadow and the protection of ME should be emphasized to promote the sustainable development of the ecosystem and the water supply of water towers in China.
2023-04-01 Web of Science