共检索到 11

Using interviews and surveys of 212 households in villages situated at different elevations in the Everest National Nature Preserve (ENNP), correlations and comparative analyses were employed to reveal the residents' perceptions and understanding of climate change and its effects on the ENNP. Results showed that: (1) nearly all residents thought that climate warming and ice-snow landscape decrease were very significant, but there was an obvious difference between the residents' cognition and observations to the change of runoff; (2) higher altitude is, more obvious warming is, and stronger residents' perception of climate change and its impacts is in the ENNP, for which educational level and age were the main factors affecting their degree of perception; (3) especially, higher altitude is, more frequent the tourism participation of residents is and higher their income is; and (4) because the centralized pollutant treatment facilities have a low efficiency, and because the area receives a large number of tourists whose activities are spatially scattered, the potential risk of environmental pollution has been increasing in recent years. At present there is an urgent need for policy suggestions at the strategic level of national ecological security and interregional equity principles concerning the adaptation to climate and environmental changes in the ENNP.

期刊论文 2024-06-01 DOI: http://dx.doi.org/10.1002/met.1987 ISSN: 1350-4827

Bacteria in the genus Arthrobacter have been found in extreme environments, e.g. glaciers, brine and mural paintings. Here, we report the discovery of a novel pink-coloured bacterium, strain QL17(T), capable of producing an extracellular water-soluble blue pigment. The bacterium was isolated from the soil of the East Rongbuk Glacier of Mt. Everest, China. 16S rRNA gene sequence analysis showed that strain QL17(T) was most closely related to the species Arthrobacter bussei KR32 (T). However, compared to A.bussei KR32(T) and the next closest relatives, the new species demonstrates considerable phylogenetic distance at the whole-genome level, with an average nucleotide identity of <85 % and inferred DNA-DNA hybridization of <30 %. Polyphasic taxonomy results support our conclusion that strain QL17(T) represents a novel species of the genus Arthrobacter. Strain QL17(T) had the highest tolerance to hydrogen peroxide at 400 mM. Whole-genome sequencing of strain QL17(T) revealed the presence of numer-ous cold-adaptation, antioxidation and UV resistance-associated genes, which are related to adaptation to the extreme envi-ronment of Mt. Everest. Results of this study characterized a novel psychrotolerant Arthrobacter species, for which the name Arthrobacter antioxidans sp. nov. is proposed. The type strain is QL17(T) (GDMCC 1.2948(T)=JCM 35246(T)).

期刊论文 2023-11-01 DOI: http://dx.doi.org/10.1099/ijsem.0.005624 ISSN: 1466-5026

Mt. Everest (Qomolangma or Sagarmatha), the highest mount on Earth and located in the central Himalayas between China and Nepal, is characterized by highly concentrated glaciers and diverse landscapes, and is considered to be one of the most sensitive area to climate change. In this paper, we comprehensively synthesized the climate and environmental changes in the Mt. Everest region, including changes in air temperature, precipitation, glaciers and glacial lakes, atmospheric environment, river and lake water quality, and vegetation phenology. Historical temperature reconstruction from ice cores and tree rings revealed the distinct features of 20th century warming in the Mt. Everest region. Meteorological observations further proved that the Mt. Everest region has been experiencing significant warming (approximately 0.33 degrees C/decade) but relatively stable precipitation during 1961-2018 AD. Projected results (during 2006-2099 AD) under different representative concentration pathway scenarios showed a general warming trend in the region, with larger warming occurring in winter than in summer. Meanwhile, the precipitation projections varied spatially with no significant trends over the region. Intensive glacier shrinkage was characterized by decreasing glacier areas, while glacier-fed river runoff increased. Glacial lakes expanded with increasing glacial lake areas and numbers. These findings indicated a clear regional hydrological response to climate warming. Owing to the remote location of Mt. Everest, the present atmospheric environment remained relatively clean; however, long-range transport of atmospheric pollutants from South Asia and West Asia may have substantially influenced the Mt. Everest region, resulting in increasing concentrations of pollutants since the Industrial Revolution. Anthropogenic activities have been shown to influence river and lake water quality in this remote region, especially in the downstream. The end of the vegetation growing season advanced in the northern slope and did not change in southern slope region of the Mt. Everest, and there was no significant change in start date of the growing season in the region. This review will enhance our understanding of climate and environmental changes in the Mt. Everest region under global warming.

期刊论文 2023-02-26 DOI: http://dx.doi.org/10.1016/j.earscirev.2021.103911 ISSN: 0012-8252

Gram-stain-negative, aerobic, rod-shaped, non-motile bacterium strain ZFBP2030(T) was isolated from a rock on the North slope of Mount Everest. This strain contained a unique ubiquinone-10 (Q-10) as a predominant respiratory quinone. Among the tested fatty acids, the strain contained summed feature 8, C-14:0 2OH, and C-16:0, as major cellular fatty acids. The polar lipid profile contained phosphatidyl glycerol, phosphatidyl ethanolamine, three unidentified phospholipids, two unidentified aminolipids, and six unidentified lipids. The cell-wall peptidoglycan was a meso-diaminopimelic acid, and cell-wall sugars were ribose and galactose. Phylogenetic analyses based on 16S rRNA gene sequence revealed that strain ZFBP2030(T) was a member of the genus Sphingomonas, exhibiting high sequence similarity to the 16S rRNA gene sequences of Sphingomonas aliaeris DH-S5(T) (97.9%), Sphingomonas alpina DSM 22537(T) (97.3%) and Sphingomonas hylomeconis CCTCC AB 2013304(T) (97.0%). The 16S rRNA gene sequence similarity between ZFBP2030(T) and other typical strains was less than 97.0%. The average amino acid identity values, average nucleotide identity, and digital DNA-DNA hybridization values between strain ZFBP2030(T) and its highest sequence similarity strains were 56.9-79.9%, 65.1-82.2%, and 19.3-25.8%, respectively. The whole-genome size of the novel strain ZFBP2030(T) was 4.1 Mbp, annotated with 3838 protein-coding genes and 54 RNA genes. Moreover, DNA G + C content was 64.7 mol%. Stress-related functions predicted in the subsystem classification of the strain ZFBP2030(T) genome included osmotic, oxidative, cold/heat shock, detoxification, and periplasmic stress responses. The overall results of this study clearly showed that strain ZFBP2030(T) is a novel species of the genus Sphingomonas, for which the name Sphingomonas endolithica sp. nov. is proposed. The type of strain is ZFBP2030(T) (= EE 013(T) = GDMCC 1.3123(T) = JCM 35386(T)).

期刊论文 2023-02-01 DOI: http://dx.doi.org/10.1007/s10482-023-01903-3 ISSN: 0003-6072

Mount Everest provides natural advantages to finding radiation-resistant extremophiles that are functionally mechanistic and possess commercial significance. (1) Background: Two bacterial strains, designated S5-59T and S8-45T, were isolated from moraine samples collected from the north slope of Mount Everest at altitudes of 5700m and 5100m above sea level. (2) Methods: The present study investigated the polyphasic features and genomic characteristics of S5-59(T) and S8-45(T). (3) Results: The major fatty acids and the predominant respiratory menaquinone of S5-59(T) and S8-45(T) were summed as feature 3 (comprising C16:1 omega 6c and/or C16:1 omega 7c) and ubiquinone-10 (Q-10). Phylogenetic analyses based on 16S rRNA sequences and average nucleotide identity values among these two strains and their reference type strains were below the species demarcation thresholds of 98.65% and 95%. Strains S5-59(T) and S8-45(T) harbored great radiation resistance. The genomic analyses showed that DNA damage repair genes, such as mutL, mutS, radA, radC, recF, recN, etc., were present in the S5-59(T) and S8-45(T) strains. Additionally, strain S5-59(T) possessed more genes related to DNA protection proteins. The pan-genome analysis and horizontal gene transfers revealed that strains of Sphingomonas had a consistently homologous genetic evolutionary radiation resistance. Moreover, enzymatic antioxidative proteins also served critical roles in converting ROS into harmless molecules that resulted in resistance to radiation. Further, pigments and carotenoids such as zeaxanthin and alkylresorcinols of the non-enzymatic antioxidative system were also predicted to protect them from radiation. (4) Conclusions: Type strains S5-59(T) (=JCM 35564T =GDMCC 1.3193T) and S8-45(T) (=JCM 34749T =GDMCC 1.2715T) represent two novel species of the genus Sphingomonas with the proposed name Sphingomonas qomolangmaensis sp. nov. and Sphingomonas glaciei sp. nov. The type strains, S5-59(T) and S8-45(T), were assessed in a deeply genomic study of their radiation-resistant mechanisms and this thus resulted in a further understanding of their greater potential application for the development of anti-radiation protective drugs.

期刊论文 2022-07-05 DOI: http://dx.doi.org/10.3390/microorganisms10102037

Due to the extreme, harsh natural environment in the Himalayas higher than 8000 m above sea level (asl) long-term and continuous meteorological observation is still a great challenge, and little is known about water vapor transport in this extremely high region. Based on the Automatic Weather Stations (AWSs) at 3810 m, 5315 m, 6464 m, 7945 m and 8430 m asl on the southern slope of Mt. Everest, this study investigates the meteorological characteristics and water vapor transport in the Mt. Everest region from June 2019 to June 2021. The results show that (1) with the increase of altitude, the temperature lapse rate becomes deeper from -4.7 degrees C km(-1) to -8.1 degrees C km(-1); (2) the relative humidity increases significantly in summer, and precipitation during the monsoon period accounts for more than 70% of the annual total; and (3) during the monsoon in 2020, the number of days with negative daily water vapor divergence in the whole layer accounted for 31% at the height from ground to 350 hPa, and the moisture amount transported through water vapor convergence was about 122 mm. The study indicates that, with sufficient moisture supply, strong water vapor convergence and a relatively large vertical velocity, a small amount of water vapor can climb to an extreme height and be transported from the southern to the northern slope of the Himalayas.

期刊论文 2022-06-01 DOI: http://dx.doi.org/10.3390/w14111671

We isolated and analyzed a novel, Gram-stain-positive, aerobic, rod-shaped, non-motile actinobacterium, designated as strain ZFBP1038(T), from rock sampled on the north slope of Mount Everest. The growth requirements of this strain were 10-37 degree celsius, pH 4-10, and 0-6% (w/v) NaCl. The sole respiratory quinone was MK-9, and the major fatty acids were anteiso-C-15:0 and iso-C-17:0. Peptidoglycan containing meso-diaminopimelic acid, ribose, and glucose were the major cell wall sugars, while polar lipids included diphosphatidyl glycerol, phosphatidyl glycerol, an unidentified phospholipid, and an unidentified glycolipid. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZFBP1038(T) has the highest similarity with Spelaeicoccus albus DSM 26341( T) (96.02%). ZFBP1038(T) formed a distinct monophyletic clade within the family Brevibacteriaceae and was distantly related to the genus Spelaeicoccus. The G + C content of strain ZFBP1038(T) was 63.65 mol% and the genome size was 4.05 Mb. Digital DNA-DNA hybridization, average nucleotide identity, and average amino acid identity values between the genomes of strain ZFBP1038(T) and representative reference strains were 19.3-25.2, 68.0-71.0, and 52.8-60.1%, respectively. Phylogenetic, phenotypic, and chemotaxonomic characteristics as well as comparative genome analyses suggested that strain ZFBP1038(T) represents a novel species of a new genus, for which the name Saxibacter gen. nov., sp. nov. was assigned with the type strain Saxibacter everestensis ZFBP1038(T) (= EE 014( T) = GDMCC 1.3024( T) = JCM 35335( T)).

期刊论文 2021-01-15 DOI: http://dx.doi.org/10.1007/s12275-024-00108-1 ISSN: 1225-8873

A bacterial strain, designated S9-5(T), was isolated from moraine samples collected from the north slope of Mount Everest at an altitude of 5500 m above sea level. A polyphasic study confirmed the affiliation of the strain with the genus Sphingomonas. Strain S9-5(T) was an aerobic, Gram-stain-negative, non-spore-forming, non-motile and rod-shaped bacterium that could grow at 10-40 degrees C, pH 5-8 and with 0-9% (w/v) NaCl. Q-10 was its predominant respiratory menaquinone. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid, an unidentified aminophospholipid and eight unidentified lipids comprised the polar lipids of strain S9-5(T). Its major fatty acids were summed feature 8 (C-18:1 omega 7c and/or C-18:1 omega 6c) and C-16:0. The G+C content was 65.75mol%. Phylogenetic analysis based on 16S rRNA sequences showed that strain S9-5(T) was phylogenetically closely related to Sphingomonas panaciterrae DCY91(T) (98.17%), Sphingomonas olei K-1-16(T) (98.11%) and Sphingomonas mucosissima DSM 17494(T) (97.39%). The average nucleotide identity values among strain S9-5(T) and Sphingomonas panaciterrae DCY91(T), Sphingomonas olei K-1-16(T) and Sphingomonas mucosissima DSM 17494(T) were 78.82, 78.87 and 78.29%, respectively. Based on the morphological, physiological and chemotaxonomic data, strain S9-5(T) (=JCM 34750(T)=GDMCC 1.2714(T)) should represent a novel species of the genus Sphingomonas, for which we propose the name Sphingomonas radio-durans sp. nov.

期刊论文 2020-08-01 DOI: http://dx.doi.org/10.1099/ijsem.0.005312 ISSN: 1466-5026

Inorganic particulate nitrate (p-NO3-), gaseous nitric acid (HNO3(g)) and nitrogen oxides (NOx = NO + NO2), as main atmospheric pollutants, have detrimental effects on human health and aquatic/terrestrial ecosystems. Referred to as the 'Third Pole' and the 'Water Tower of Asia', the Tibetan Plateau (TP) has attracted wide attention on its environmental changes. Here, we evaluated the oxidation processes of atmospheric nitrate as well as traced its potential sources by analyzing the isotopic compositions of nitrate (delta N-15, delta O-18, and Delta O-17) in the aerosols collected from the Mt. Everest region during April to September 2018. Over the entire sampling campaigns, the average of delta N-15(NO3-), delta O-18(NO3-), and Delta O-17(NO3-) was -5.1 +/- 2.3 parts per thousand, 66.7 +/- 10.2 parts per thousand, and 24.1 +/- 3.9 parts per thousand, respectively. The seasonal variation in Delta O-17(NO3-) indicates the relative importance of O-3 and HO2/RO2/OH in NOx oxidation processes among different seasons. A significant correlation between NO3- and Ca2+ and frequent dust storms in the Mt. Everest region indicate that initially, the atmospheric nitrate in this region might have undergone a process of settling; subsequently, it got re-suspended in the dust. Compared with the Delta O-17(NO3-) values in the northern TP, our observed significantly higher values suggest that spatial variations in atmospheric Delta O-17(NO3-) exist within the TP, and this might result from the spatial variations of the atmospheric O-3 levels, especially the stratospheric O-3, over the TP. The observed delta N-15(NO3-) values predicted remarkably low delta N-15 values in the NOx of the sources and the N isotopic fractionation plays a crucial role in the seasonal changes of delta N-15(NO3-). Combined with the results from the backward trajectory analysis of air mass, we suggest that the vehicle exhausts and agricultural activities in South Asia play a dominant role in determining the nitrate levels in the Mt. Everest region. (c) 2020 Elsevier Ltd. All rights reserved.

期刊论文 2020-06-01 DOI: http://dx.doi.org/10.1016/j.envpol.2020.115274 ISSN: 0269-7491

Glacier melting exports a large amount of nitrate to downstream aquatic ecosystems. Glacial lakes and glacier-fed rivers in proglacial environments serve as primary recipients and distributors of glacier-derived nitrate (NO3-), yet little is known regarding the sources and cycling of nitrate in these water bodies. To address this knowledge gap, we conducted a comprehensive analysis of nitrate isotopes (delta15NNO3, delta18ONO3, and Delta17ONO3) in waters from the glacial lake and river of the Rongbuk Glacier-fed Basin (RGB) in the mountain Everest region. The concentrations of NO3- were low (0.43 +/- 0.10 mg/L), similar to or even lower than those observed in glacial lakes and glacier-fed rivers in other high mountain regions, suggesting minimal anthropogenic influence. The NO3- concentration decreases upon entering the glacial lake due to sedimentation, and it increases gradually from upstream to downstream in the river as a soil source is introduced. The analysis of Delta17ONO3 revealed a substantial contribution of unprocessed atmospheric nitrate, ranging from 34.29 to 56.43%. Denitrification and nitrification processes were found to be insignificant in the proglacial water of RGB. Our study highlights the critical role of glacial lakes in capturing and redistributing glacier-derived NO3- and emphasizes the need for further investigations on NO3- transformation in the fast-changing proglacial environment over the Tibetan Plateau and other high mountain regions.

期刊论文 2020-01-01 DOI: http://dx.doi.org/10.1021/acs.est.3c06419 ISSN: 0013-936X
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共11条,2页