In alpine tundra regions, snowmelt plays a crucial role in creating spatial heterogeneity in soil moisture and nutrients across various terrains, influencing vegetation distribution. With climate warming, snowmelt has advanced, lengthening the growing season while also increasing the risk of frost damage to evergreen dwarf shrubs like Rhododendron aureum in alpine tundra regions. To understand these long-term effects, we used remote sensing imagery to analyze nearly four decades (1985-2022) of snowmelt date and the distribution change of R. aureum in Changbai Mountain, East China's only alpine tundra. Results show that snowmelt advanced by 1-3 days/10 years, with faster rates at higher elevations and shady slopes (0.4-0.6 days/10 years more than sunny slopes), while R. aureum increased more on shady slopes under such conditions. Our study demonstrates that these shifts in snowmelt date vary significantly across topographies and reveals how topography and snowmelt changes interact to shape the distribution of evergreen shrubs under climate warming.
Arctic extreme winter warming events (WW events) have increased in frequency with climate change. WW events have been linked to damaged tundra vegetation (Arctic browning), but the mechanisms that link episodic winter thaw to plant damage in summer are not fully understood. We suggest that one mechanism is microbial N immobilization during the WW event, which leads to a smaller release of winter-mineralized N in spring and therefore more N limitation for vegetation in summer. We tested this hypothesis in a Western Greenlandic Low arctic tundra, where we experimentally simulated a 6 day field-scale extreme WW event and 1) used stable isotopes to trace the movement of N as a consequence of the WW event, 2) measured the effect of a WW event on spring N release in top soils in the laboratory, and 3) measured the carry-over effect on summer aboveground vegetation C/N ratio in tundra subject to a WW event. Our results show that soil mineral N released by a WW event followed by soil thaw is taken up by microbes and stored in the soil, whereas vascular plants acquired almost none, and significant amounts were lost to leaching and gaseous emissions. As soils thawed in spring, we saw weak but not significant evidence (P = 0.067) for a larger N release over the first month of spring thaw in Control soils compared to WW event soils, although not significantly. A weak signal (P = 0.07) linked WW event treatment to higher summer C/N ratios in evergreen shrubs, whereas deciduous shrubs were not affected. We conclude that our results did not show significant evidence for WW events causing Arctic browning via N immobilization and summer N limitation, but that we had indications (P < 0.1) which merits further testing of the theory in various tundra types and with repeated WW events. Evergreen shrubs could be especially sensitive to winter N immobilization, with implications for future vegetation community composition and tundra C storage.