Land degradation can cause food insecurities and can damage ecosystems. This study highlights the potential of cyanobacteria (Anabaena variabilis, Spirulina platensis, Scytonema javanicum, and Nostoc commune), along with bacteria (Bacillus sp. SSAU-2), and their consortia to form biological soil crust, restoring soil properties and promoting plant growth. The efficiency of soil improvement was characterized by physiochemical parameters such as phosphate solubilization, %TOC, pH, and salinity. Scanning electron microscopy and a pot experiment were utilized to observe the morphological and soil improvement studies. Bacterial inoculation resulted in significant improvements in soil fertility, such as exopolysaccharide, organic carbon, organic matter, phosphorus content, and total soil porosity. Cyanobacteria consortia were more effective than monocultures at improving soil fertility and promoting barley plant development. The potential value of selected cyanobacteria and bacterial consortia as a useful tool for the restoration of degraded land is demonstrated experimentally by this study.
The accumulation of heavy metals in the soil not only causes serious damage to the soil ecosystem, but also threatens human health through the food chain. Exopolysaccharides have the functions of adsorbing and chelating heavy metals and reducing their bioavailability in the soil. In our study, exopolysaccharide-producing bacteria with a high efficiency in adsorbing cadmium (Cd) and lead (Pb) were screened from heavy metal-contaminated farmland. Through pot experiments, the influence of functional strains on the size distribution, heavy metal content, and bacterial community structure of soil aggregates in lettuce was studied using high-throughput sequencing technology. The results show that 11 strains secreting exopolysaccharides were initially screened from heavy metal-contaminated soil. Among them, strain Z23 had a removal rate of 88.6% for Cd and 93.2% for Pb. The rate at which Cd was removed by strain Z39 was 92.3%, and the rate at which Pb was removed was 94.4%. Both strains belong to Bacillus sp. Strains Z23 and Z39 induced the formation of Fe2Pb(PO4)(2), Cd-2(PO4)(2), and Pb2O3 in the solution. The pot experiments showed that strains Z23 and Z39 increased (19.1 similar to 23.9%) the dry weight and antioxidant enzyme activity of lettuce roots and leaves, while reducing (40.1 similar to 61.7%) the content of Cd and Pb. Strains Z23 and Z39 increased the proportion of microaggregates (<0.25 mm) and the content of exopolysaccharides in rhizosphere soil and reduced (38.4-59.7%) the contents of available Cd and Pb in microaggregates, thus inhibiting the absorption of heavy metals by lettuce. In addition, the exopolysaccharide content and the bacterial community associated with heavy metal resistance and nitrogen (N) cycling (Patescibacteria, Saccharimonadales, Microvirga, and Pseudomonas) in microaggregates were key factors affecting the available heavy metal content in soil. These results show that the exopolysaccharide-producing bacteria Z23 and Z39 reduced the absorption of Cd and Pb by lettuce tissues, thus providing strain resources for the safe utilization of soils that exceed heavy metal standards for farmland and for reducing the heavy metal content in vegetables.
The exopolysaccharide (EPS) produced by Pantoea alhagi NX-11, referred to as alhagan, enhances plant stress resistance, improves soil properties, and exhibits notable rheological properties. Despite these benefits, the exact bio-synthetic process of alhagan by P. alhagi NX-11 remains unclear. This study focused on sequencing the complete genome of P. alhagi NX-11 and identifying an alhagan synthesis gene cluster (LQ939_RS12550 to LQ939_RS12700). Gene annotation revealed that alhagan biosynthesis in P. alhagi NX-11 follows the Wzx/Wzy-dependent pathway. Furthermore, transcriptome analysis of P. alhagi NX-11 highlighted significant upregulation of four glycosyltransferase genes (alhH, wcaJ, alhK, and alhM) within the alhagan synthesis gene cluster. These glycosyltransferases are crucial for alhagan synthesis. To delve deeper into this process, two upregulated and uncharacterized glycosyltransferase genes, alhH and alhK, were knocked out. The resulting mutants, Delta alhH and Delta alhK, showed a notable decrease in EPS yield, reduced molecular weight, and altered monosaccharide compositions. These findings contribute to a better understanding of the alhagan biosynthesis mechanism in P. alhagi NX-11.
Bacteria can synthesize a broad spectrum of multifunctional polysaccharides including extracellular polysaccharides (EPS). Bacterial EPS can be utilized in the food, pharmaceutical, and biomedical areas owing to their physical and rheological properties in addition to generally presenting low toxicity. From an ecological viewpoint, EPS are biodegradable and environment compatible, offering several advantages over synthetic compounds. This study investigated the EPS produced by Klebsiella oxytoca (KO-EPS) by chemically characterizing and evaluating its properties. The monosaccharide components of the KO-EPS were determined by HPLC coupled with a refractive index detector and GC-MS. The KO-EPS was then analyzed by methylation analysis, FT-IR and NMR spectroscopy to give a potential primary structure. KO-EPS demonstrated the ability to stabilize hydrophilic emulsions with various hydrophobic compounds, including hydrocarbons and vegetable and mineral oils. In terms of iron chelation capacity, the KO-EPS could sequester 41.9 % and 34.1 % of the most common iron states, Fe2+ and Fe3+, respectively. Moreover, KO-EPS exhibited an improvement in the viscosity of aqueous dispersion, being proportional to the increase in its concentration and presenting a non-Newtonian pseudoplastic flow behavior. KO-EPS also did not present a cytotoxic effect indicating that the KO-EPS could have potential applications as a natural thickener, bioemulsifier, and bioremediation agent.
The literature presents the preserving effect of biological coatings developed from various microbial sources. However, the presented work exhibits its uniqueness in the utilization of halophilic exopolysaccharides as food coating material. Moreover, such extremophilic exopolysaccharides are more stable and economical production is possible. Consequently, the aim of the presented research was to develop a coating material from marine exopolysaccharide (EPS). The significant EPS producers having antagonistic attributes against selected phytopathogens were screened from different marine water and soil samples. TSIS01 isolate revealed the maximum antagonism well and EPS production was selected further and characterized as Bacillus tequilensis MS01 by 16S rRNA analysis. EPS production was optimized and deproteinized EPS was assessed for biophysical properties. High performance thin layer chromatography (HPTLC) analysis revealed that EPS was a heteropolymer of glucose, galactose, mannose, and glucuronic acid. Fourier transform infrared spectroscopy, X-ray diffraction, and UV-visible spectra validated the presence of determined sugars. It showed high stability at a wide range of temperatures, pH and incubation time, approximate to 1.63 x 10(6) Da molecular weight, intermediate solubility index (48.2 +/- 3.12%), low water holding capacity (12.4 +/- 1.93%), and pseudoplastic rheologic shear-thinning comparable to xanthan gum. It revealed antimicrobial potential against human pathogens and antioxidants as well as anti-inflammatory potential. The biocontrol assay of EPS against phytopathogens revealed the highest activity against Alternaria solani. The EPS-coated and control tomato fruits were treated with A. solani suspension to check the % disease incidence, which revealed a significant (p < 0.001) decline compared to uncoated controls. Moreover, it revealed shelf-life prolonging action on tomatoes comparable to xanthan gum and higher than chitosan. Consequently, the presented marine EPS was elucidated as a potent coating material to mitigate post-harvest losses.