共检索到 4

Ethiopia's vulnerability to climate change is exacerbated by high poverty rates, rapid population growth, increasing prevalence of vector-borne diseases, and heavy reliance on rain-fed agriculture. This narrative review aims to compile existing data on the impacts of climate extremes on the physical environment, public health, and livelihoods in Ethiopia, thereby highlighting the significance of this region for such a study. Data were sourced from peer-reviewed journal articles from databases like PubMed, Scopus, and Web of Science, as well as reports and other unpublished documents. Results show that Ethiopia is facing increasing frequency, severity, duration, and timing of climate-related extreme events. Key challenges include environmental degradation, reduced crop yields, recurring floods, droughts, famines, increased heat waves, and spread of infectious diseases. Average daily rainfall is projected to decrease from 2.04 mm (1961-1990) to 1.97 mm (2070-2099), indicating a worsening climate trend. Moreover, the average annual temperature has risen by 1.3 degrees C since 1960, at a rate of 0.28 degrees C per decade. Flood records indicate a sharp rise, with 274 flood incidents recorded in 2020, causing extensive damage, including an annual soil loss of 1 billion tons in the Ethiopian highlands, reducing land productivity by 2.2% annually. Droughts from 1964 to 2023 affected 96.5 million people, reduced GDP by 4%, decreased agricultural output by 12%, and increased inflation rates by 15%. The regions of Afar, Somali, Gambella, and Benshangul Gumuz exhibit extreme vulnerability to health impacts due to rising temperatures. Addressing climate extremes is critical to mitigate their adverse effects on Ethiopia's environment, public health, and livelihoods.

期刊论文 2024-12-16 DOI: 10.3389/fclim.2024.1435138

Frequent extreme weather events result in substantial economic losses for farming communities, posing a significant threat to the livelihood security of smallholder farmers in the Sundarbans region of India. Various agricultural enterprises in this area are continually at risk due to saline water intrusion, crop damage from heavy rainfall, and flooding. We examine the strategies farmers have adopted to sustain their livelihoods in the face of these extreme weather events. We collected primary data from a randomly selected sample of 1,200 farmers across six blocks in the Sundarbans region, focussing on farm households engaged in diverse agricultural enterprises, including field crop cultivation, livestock rearing, and fish farming. We used the Analytical Hierarchy Process (AHP) to prioritize the coping mechanisms adopted by these farming communities. The assessment of coping mechanisms was based on four criteria: ease of implementation, cost, effectiveness, and durability for long-term application. Effectiveness got the highest weights of 0.492 followed by the durability of the coping strategy weights of 0.309. Coping mechanisms pertaining to managing soil health against soil salinity, raising livestock and fish species as well as cultivating field crops were identified and prioritized according to their perceived efficacy against extreme weather events. Our results can inform the formulation of robust and sustainable development policies for agricultural and allied sectors in the Indian Sundarbans.

期刊论文 2024-06-01 DOI: 10.1007/s10745-024-00522-4 ISSN: 0300-7839

This paper presents a framework to assess the vulnerability of the electrical power grid (EPG) to extreme weather events. The paper presents a methodology based on the Extra-Trees classifier and historical weather data to identify the EPG assets that are most likely to be affected in future extreme weather conditions under various climate change scenarios. The developed methodology considers the EPG different asset classes (lines, towers, poles, transformers, substations.) and identifies the weather parameters that are most relevant to their vulnerability. The paper presents results concerning wind speed, wind gusts, soil type, and altitude, which are used to train a model that predicts the probability of an asset being damaged based on the future weather parameters. The methodology was developed has been applied to a dataset of historical events in Portugal, from the major Portuguese DSO, thus assessing the future vulnerability of the EPG under three different scenarios of climate change. The developed methodology is a successful tool, that would not only help prevent occurrences of faults/failures in the Electrical Power Grid and its recovery from these occurrences, but also to have a better perception of a geographically safe future expansion of infrastructures. In this way it contributes to a continuous, non-faulty EPG operation, fulfilling society's demands by generating maps that identify the most vulnerable areas for each future climate scenario.

期刊论文 2024-01-01 DOI: 10.1109/CPE-POWERENG60842.2024.10604340 ISSN: 2166-9546

In the future, climate models predict an increase in global surface temperature and during winter a changing of precipitation from less snowfall to more raining. Without protective snow cover, freezing can be more intensive and can enter noticeably deeper into the soil with effects on C cycling and soil organic matter (SOM) dynamics. We removed the natural snow cover in a Norway spruce forest in the Fichtelgebirge Mts. during winter from late December 2005 until middle of February 2006 on three replicate plots. Hence, we induced soil frost to 15cm depth (at a depth of 5 cm below surface up to -5 degrees C) from January to April 2006, while the snow-covered control plots never reached temperatures < 0 degrees C. Quantity and quality of SOM was followed by total organic C and biomarker analysis. While soil frost did not influence total organic-C and lignin concentrations, the decomposition of vanillyl monomers (Ac/Ad)(V) and the microbial-sugar concentrations decreased at the end of the frost period, these results confirm reduced SOM mineralization under frost. Soil microbial biomass was not affected by the frost event or recovered more quickly than the accumulation of microbial residues such as microbial sugars directly after the experiment. However, in the subsequent autumn, soil microbial biomass was significantly higher at the snow-removal (SR) treatments compared to the control despite lower CO2 respiration. In addition, the water-stress indicator (PLFA [cy17:0 + cy19:0] / [16:1 omega 7c + 18:1 omega 7c]) increased. These results suggest that soil microbial respiration and therefore the activity was not closely related to soil microbial biomass but more strongly controlled by substrate availability and quality. The PLFA pattern indicates that fungi are more susceptible to soil frost than bacteria.

期刊论文 2011-10-01 DOI: 10.1002/jpln.201100009 ISSN: 1436-8730
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页