共检索到 3

Freeze-thaw (F-T) cycle tests and triaxial shear tests are conducted under varying freezing ambient temperatures and different F-T cycles for remolded loess. The results indicate that nearly all stress-strain curves of remolded loess exhibit strain-hardening behavior under varying freezing ambient temperatures and different F-T cycles. A decrease in freezing temperature alters the yield strain of loess and diminishes its resistance to deformation. As the freezing temperature decreases and the number of F-T cycles increases, the failure deviatoric stress of loess initially decreases, then increases, and eventually stabilizes. The most detrimental freezing temperature is -12 degrees C, which significantly exacerbates the adverse effects of F-T cycles on failure deviatoric stress. The strength indices initially decrease and then increase with decreasing freezing temperatures, while they first decrease and then stabilize with an increasing number of F-T cycles. Notably, the deterioration of cohesion is significantly greater than that of the internal friction angle. A quantitative analysis is conducted to examine the relationship between failure deviatoric stress, shear strength index, temperature, and freeze-thaw cycles. The fitting results effectively quantify the influence of different variables on the strength characteristics of loess. The findings of this research have significant theoretical implications for practical engineering applications in the northwest loess region.

期刊论文 2025-05-24 DOI: 10.3390/buildings15111806

The Loess Plateau region of China has an anomalous climate and frequent geological disasters. Hipparion laterite in seasonally frozen regions exhibits heightened susceptibility to freeze-thaw (F-T) cycling, which induces progressive structural weakening and significantly elevates the risk of slope instability through mechanisms including pore water phase transitions, aggregate disintegration, and shear strength degradation. This study focuses on the slip zone Hipparion laterite from the Nao panliang landslide in Fugu County, Shaanxi Province. We innovatively integrated F-T cycling tests with ring-shear experiments to establish a hydro-thermal-mechanical coupled multi-scale evaluation framework for assessing F-T damage in the slip zone material. The microstructural evolution of soil architecture and pore characteristics was systematically analyzed through scanning electron microscopy (SEM) tests. Quantitative characterization of mechanical degradation mechanisms was achieved using advanced microstructural parameters including orientation frequency, probabilistic entropy, and fractal dimensions, revealing the intrinsic relationship between pore network anisotropy and macroscopic strength deterioration. The experimental results demonstrate that Hipparion laterite specimens undergo progressive deterioration with increasing F-T cycles and initial moisture content, predominantly exhibiting brittle deformation patterns. The soil exhibited substantial strength degradation, with total reduction rates of 51.54% and 43.67% for peak and residual strengths, respectively. The shear stress-displacement curves transitioned from strain-softening to strain-hardening behavior, indicating plastic deformation-dominated shear damage. Moisture content critically regulates pore microstructure evolution, reducing micropore proportion to 23.57-28.62% while promoting transformation to mesopores and macropores. At 24% moisture content, the areal porosity, probabilistic entropy, and fractal dimension increased by 0.2263, 0.0401, and 0.0589, respectively. Temperature-induced pore water phase transitions significantly amplified mechanical strength variability through cyclic damage accumulation. These findings advance the theoretical understanding of Hipparion laterite's engineering geological behavior while providing critical insights for slope stability assessment and landslide risk mitigation strategies in loess plateau regions.

期刊论文 2025-05-07 DOI: 10.3390/app15095202

The strength deterioration of soil-rock mixtures (SRM) subjected to freeze-thaw (F-T) cycles leads to instability and failure of upper engineering structures in cold regions. However, the mutual feedback response mechanism pertaining to the changes of pore and strength in SRM under F-T cycles are rarely addressed. Nuclear magnetic resonance and triaxial tests were carried out to study the pore structure characteristics and strength response patterns of samples. A correlation model of SRM porosity and strength deterioration was first proposed under F-T cycles, and the model rationality was verified by test data. The results demonstrated that the pore connectivity and porosity increased throughout the F-T process, with the T2 spectral distribution curves exhibiting three peaks. Among these peaks, the main peaks underwent slight changes, while the secondary and micro peaks presented significant changes. Before 3 F-T cycles, the pore distribution evolved to small pores uniformly, followed with the large pores increasing and the micropores disappearing. With increasing of F-T times, the strength and cohesion of SRM experienced a drastic decline, while the internal friction angle demonstrated a slight decrease accompanied by fluctuations. Based on the analysis of test results, a correlation model regarding the porosity and strength deterioration was proposed through the relationship between the micro-structure evolution and the macro-mechanical response during F-T cycles. Furthermore, intrinsic mechanism of SRM strength deterioration under F-T cycles was revealed by considering the pore structure characteristics. The results can provide theoretical insights for the analysis of F-T disaster mechanism and prevention of SRM in cold regions.

期刊论文 2024-01-01 DOI: 10.1016/j.coldregions.2023.104040 ISSN: 0165-232X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页