在列表中检索

1
1
共检索到 2

青藏高原积雪监测在地球辐射平衡、全球气候变化和生态环境等方面有重要作用,对气候预测、雪灾预测等具有重要意义。FY-4(风云4号)卫星数据具有高时空分辨率的优势,基于FY-4A(风云4号A星)构建积雪监测方法与模型,不仅拓展了静止卫星应用领域,也丰富了积雪监测应用的手段。FY-4的高时间分辨率为积雪监测的研究提供了分钟级数据,对积雪与云的变化掌握的更为细致,但用于积雪监测的波段,因分辨率不高容易导致错判与漏判。本文基于2020年小时级野外地面雪深观测数据、风云3号D星积雪覆盖产品(FY-3D_SNC)数据,构建了基于归一化积雪指数(Normalized Difference Snow Index, NDSI)的FY-4A卫星积雪判识方法,提出了雪深监测模型与等级划分指标。结果表明:NDSI≥0.20是青藏高原地区FY-4A卫星积雪判识的适用阈值,无论有云或无云条件,其漏判率均低于8.0%。地面站点验证结果表明,积雪判识准确率达83.33%以上。空间范围内直接剔除云区后,积雪判识经混淆矩阵验证准确率在82.48%以上。因此,FY-4A卫星在青藏高原地区具有积雪监测的能力。虽然FY-4A卫星...

期刊论文 2023-11-02 DOI: 10.19517/j.1671-6345.20220394

高时间分辨率的积雪判识对于新疆牧区农牧业发展和雪灾预警具有重要作用,针对已有积雪产品易受复杂地形地貌,下垫面类型以及云遮蔽的影响,导致积雪判识精度降低的问题,提出一种利用深度学习方法对风云4号A星多通道辐射扫描计(AGRI)数据与地理信息数据进行多特征时序融合的积雪判识方法:以多时相FY-4A/AGRI多光谱遥感数据,以及高程、坡向、坡度和地表覆盖类型等地形地貌信息作为模型输入,以Landsat 8 OLI提取的高空间分辨率积雪覆盖图作为"真值"标签,构建并训练基于卷积神经网络的积雪判识模型,从而有效区分新疆复杂地形与下垫面地区的云、雪以及无雪地表,最终得到逐小时积雪覆盖范围产品。经数据集和2019年地面气象站实测雪盖验证,该方法精度高于国际主流MODIS逐日积雪产品MOD10A1和MYD10A1,显著降低云雪误判率。

期刊论文 2021-01-18
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页