Rapid warming is a major threat for the alpine biodiversity but, at the same time, accelerated glacial retreat constitutes an opportunity for taxa and communities to escape range contraction or extinction. We explored the first steps of plant primary succession after accelerated glacial retreat under the assumption that the first few years are critical for the success of plant establishment. To this end, we examined plant succession along a very short post-glacial chronosequence in the tropical Andes of Ecuador (2-13 years after glacial retreat). We recorded the location of all plant individuals within an area of 4,200 m(2) divided into plots of 1 m(2). This sampling made it possible to measure the responses of the microenvironment, plant diversity and plants traits to time since the glacial retreat. It also made it possible to produce species-area curves and to estimate positive interactions between species. Decreases in soil temperature, soil moisture, and soil macronutrients revealed increasing abiotic stress for plants between two and 13 years after glacial retreat. This increasing stress seemingly explained the lack of positive correlation between plant diversity and time since the glacial retreat. It might explain the decreasing performance of plants at both the population (lower plant height) and the community levels (lower species richness and lower accumulation of species per area). Meanwhile, infrequent spatial associations among plants indicated a facilitation deficit and animal-dispersed plants were almost absent. Although the presence of 21 species on such a small sampled area seven years after glacial retreat could look like a colonization success in the first place, the increasing abiotic stress may partly erase this success, reducing species richness to 13 species after 13 years and increasing the frequency of patches without vegetation. This fine-grain distribution study sheds new light on nature's responses to the effects of climate change in cold biomes, suggesting that faster glacial retreat would not necessarily result in accelerated plant colonization. Results are exploratory and require site replications for generalization.
Conifer mountain forests influence numerous human populations by providing a host of critical economic, sociological, and ecosystem services. Although the causes of the elevational, transitional boundaries of these forests (i.e., upper and lower timberlines) have been questioned for over a century, these investigations have focused predominately on the growth limitations of saplings or mature trees at the upper alpine boundary. Yet, the elevational movement of timberlines is dependent initially on new seedling establishment in favorable microsites that appear to be generated by ecological facilitation. Recent evidence suggests that this facilitation is critical during the initial 1-2 years of growth when survival may be less than a few percent, only cotyledons are present, and survival occurs only in favorable microsites created by inanimate objects (e.g., boulders, dead stems), microtopography, or already established vegetation. Dramatic changes in tree form (e.g., krummholz mats) across the timberline ecotone also plays an important role in generating microsite facilitation. These favorable, facilitated microsites have been characterized broadly as experiencing low sky exposure during summer (day and night) and leeward wind exposure during winter that generates protective snow cover, all of which are needed for new seedling survival. Thus, determining the specific microclimate and edaphic characteristics of favorable microsites, and their frequency at timberline, will provide a more mechanistic understanding and greater predictability of the future elevation and extent of conifer mountain forests. In addition, although the ecophysiological advantages of a needle-like leaf morphology is well established for adult conifer trees, the advantage of this phylogenetically unique trait in emergent seedlings has not been thoroughly evaluated. Understanding seedling ecophysiology and the functional morphology that contributes to survival, plus the nature and frequency of favorable microsites at timberline, will enable more reliable estimates of future elevational shifts in conifer mountain forests. This approach could also lead to the development of a valuable and sensitive tool for forest managers interested in evaluating future changes in these forests under increased large-scale infestation and drought mortality, as well as for current scenarios of predicted climate change.
Questions Is the macrolichen Usnea antarctica a nurse' species to Antarctic flora? Are positive plantplant interactions more frequent than negative interactions in Antarctic ecosystems? Are microclimatic modifications by cushions of U.antarctica responsible for the nurse effect? Location Two sites in Antarctica: King George Island, South Shetland (62 degrees 11S, 58 degrees 56W; 62 degrees 11S, 58 degrees 59W). Methods We evaluated the association of plant species with U.antarctica cushions by recording species growing in equivalent areas within and outside U.antarctica cushions. Additionally, we performed transplant experiments with Deschampsia antarctica individuals to assess if U.antarctica cushions enhance plant survival. In both study sites we monitored temperature, moisture and nutrient status of soil outside and within the cushions to provide insights into potential mechanisms underlying possible interactions between U.antarctica and other plant species. Results Eight out of 13 species were positively associated with cushions of the widespread lichen U.antarctica, while only one species (U.aurantiaco-atra) showed a negative association with U.antarctica. Survival of Deschampsia was enhanced when growing associated with U.antarctica cushions. Our results indicate that cushions ameliorated the extreme conditions of Antarctic islands through increased temperature and soil moisture, decreased radiation and evaporative water loss and increased nutrient availability. Conclusions The nurse effect of U.antarctica is verified. Cushions of this macrolichen may be a key component in structuring the Antarctic landscape and maintaining local species richness, and their presence might influence range expansion of other species.