Urban water supply pipelines experience repetitive traffic loads during their operational lifespan, potentially leading to fatigue failure. However, existing research focuses primarily on the static or dynamic mechanical responses of pipes, with limited studies on the fatigue performance of pipes. This study investigates the fatigue performance and failure mechanism of DN200 ductile iron (DI) pipes with socket joints under traffic loads and water pressure through bending fatigue tests. First, the mechanical responses of pipe joints under traffic loads derived from statistical data on highway traffic loads, soil pressure, and self-weight are calculated using ABAQUS to give the fatigue test load amplitude. Subsequently, tests are conducted on three DN200 DI pipes under a water pressure of 0.2 MPa: one for a monotonic test and two for fatigue tests under extra car and bus loads, respectively. The fatigue life of pipes under various traffic load combinations is analyzed using cumulative damage theory. Moreover, the relationship between fatigue load amplitude and number of cycles for DN200 DI pipes are obtained on the basis of the test data. Results show that the maximum rotation angle of joint is an important indicator of failure. Finally, a theoretical method for calculating the joint angle is proposed on the basis of geometric dimensions. A good agreement between the test and theoretical results is observed. Thus, the proposed method can obtain the fatigue performance of joints effectively.
In recent years, there has been a concerning increase in road collapses triggered by failures in urban drainage systems. Concrete pipes, commonly uesd in urban drainage pipelines, endure prolonged cyclic loading from traffic above. However, the mechanisms governing the long-term performance and fatigue damage remain unclear. Through conducting fatigue model box tests on concrete pipes, the effects of different fatigue loading cycles on the circumferential strain of concrete pipes were investigated. A fatigue life prediction equation for concrete pipes was proposed, and the crack propagation under various fatigue loading cycles was observed. Additionally, corresponding 3D FE models of concrete pipe-soil interaction with bell-and-spigot joints and gaskets were constructed. These models were used to explore the vertical displacements, circumferential bending moments, and circumferential stresses of the concrete pipes under different fatigue loading cycles, the damage and failure mechanisms of the concrete pipes under fatigue loading were revealed. The results indicate that the potential failure location of concrete pipes is within the inner crown of the bell under the fatigue traffic loads. The circumferential strains and crack propagation exhibiting a three-stage evolution pattern under fatigue loads. The proposed fatigue life prediction equation accurately predicts the remaining life of concrete pipes. Upon reaching 21.89 million loading cycles, the strain at the inner crown of the bell reaches 575.0 mu epsilon, resulting in complete failure. Cracks on the inner crown of the bell extend inward and to the right from the middle of the joint, forming a channel for crack propagation. The vertical displacements at the crown and the circumferential bending moments of the bell and spigot exhibit rapid increases, stabilization, and subsequent declines with the increasing loading cycles. When concrete pipes undergo fatigue fracture, the maximum vertical displacement and circumferential bending moment at the bell are measured as 2.26 mm and 17.82 kN & sdot;m/m, respectively. Stress concentration at the bell and spigot during fatigue loading leads to crack propagation and convergence, causing redistribution of stress fields characterized by an initial increase followed by a decrease in the inner crown and invert of the bell.