Widespread shrubification across the Arctic has been generally attributed to increasing air temperatures, but responses vary across species and sites. Wood structures related to the plant hydraulic architecture may respond to local environmental conditions and potentially impact shrub growth, but these relationships remain understudied. Using methods of dendroanatomy, we analysed shrub ring width (RW) and xylem anatomical traits of 80 individuals of Salix glauca L. and Betula nana L. at a snow manipulation experiment in Western Greenland. We assessed how their responses differed between treatments (increased versus ambient snow depth) and soil moisture regimes (wet and dry). Despite an increase in snow depth due to snow fences (28-39 %), neither RW nor anatomical traits in either species showed significant responses to this increase. In contrast, irrespective of the snow treatment, the xylem specific hydraulic conductivity (Ks) and earlywood vessel size (LA95) for the study period were larger in S. glauca (p < 0.1, p < 0.01) and B. nana (p < 0.01, p < 0.001) at the wet than the dry site, while both species had larger vessel groups at the dry than the wet site (p < 0.01). RW of B. nana was higher at the wet site (p < 0.01), but no differences were observed for S. glauca. Additionally, B. nana Ks and LA95 showed different trends over the study period, with decreases observed at the dry site (p < 0.001), while for other responses no difference was observed. Our results indicate that, taking into account ontogenetic and allometric trends, hydraulic related xylem traits of both species, along with B. nana growth, were influenced by soil moisture. These findings suggest that soil moisture regime, but not snow cover, may determine xylem responses to future climate change and thus add to the heterogeneity of Arctic shrub dynamics, though more longterm species- and site- specific studies are needed.
2024-03-15 Web of ScienceArctic warming and changing precipitation patterns are altering soil nutrient availability and other processes that control the greenhouse gas balance of high-latitude ecosystems. Changes to these biogeochemical processes will ultimately determine whether the Arctic will enhance or dampen future climate change. At the Cape Bounty Arctic Watershed Observatory, a full-factorial International Tundra Experiment site was established in 2008, allowing for the investigation of ten years of experimental warming and increased snow depth on nutrient availability and trace gas exchange in a mesic heath tundra across two growing seasons (2017 and 2018). Plots with open-top chambers (OTCs) had drier soils (p < .1) that released 1.5 times more carbon dioxide (p < .05), and this effect was enhanced in the drier growing season. Increased snow depth delayed the onset of thaw and active layer development (p < .1) and corresponded with greater nitrous oxide release (p < .05). Our results suggest that decreases to soil moisture will lead to an increase in nitrate availability, soil respiration, and nitrous oxide fluxes. Ultimately, these effects may be moderated by the magnitude of future shifts and interactions between climate variability and ecological responses to permafrost thaw.
2023-12-31 Web of ScienceSeasonal snow cover has an important impact on the difference between soil- and air temperature because of the insulation effect, and is therefore a key parameter in ecosystem models. However, it is still uncertain how specific variations in soil moisture, vegetation composition, and surface air warming, combined with snow dynamics such as compaction affect the difference between soil- and air temperature. Here, we present an analysis of 8 years (2012-2020) of snow dynamics in an Arctic ecosystem manipulation experiment (using snow fences) on Disko Island, West Greenland. We explore the snow insulation effect under different treatments (mesic tundra heath as a dry site and fen area as a wet site, snow addition from snow fences, warming using open top chambers, and shrub removal) on a plot-level scale. The snow fences significantly changed the inter-annual variation in snow depths and -phenology. The maximum annual mean snow depths were 90 cm on the control side and 122 cm on the snow addition side during all study years. Annual mean snow cover duration across 8 years was 234 days on the control side and 239 days on the snow addition side. The difference between soil- and air temperature was significantly higher on the snow addition side than on the control side of the snow fences. Based on a linear mixed-effects model, we conclude that the snow depth was the decisive factor affecting the difference between soil- and air temperature in the snow cover season (p < 0.0001). The change rate of the difference between soil- and air temperature, as a function of snow depth, was slower during the period before maximum snow depth than during the period between the day with maximum snow depth until snow ending day. During the snow-free season, the effects of the open top chambers were stronger than the effects of the shrub removal, and the combination of both contributed to the highest soil temperature in the dry site, but the warming effect of open top chambers was limited and shrub removal warmed soil temperature in the wet site. The warming effects of open top chambers and shrub removal were weakened on the snow addition side, which indicates a lagged effect of snow on soil temperature. This study quantifies important dynamics in soil-air temperature offsets linked to both snow and ecosystem changes mimicking climate change and provides a reference for future surface process simulations.
2023-10-01 Web of ScienceThe increase in temperatures and changing precipitation patterns resulting from climate change are accelerating the occurrence and development of landslides in cold regions, especially in permafrost environments. Although the boundary regions between permafrost and seasonally frozen ground are very sensitive to climate warming, slope failures and their kinematics remain barely characterized or understood in these regions. Here, we apply multisource remote sensing and field investigation to study the activity and kinematics of two adjacent landslides (hereafter referred to as twin landslides) along the Datong River in the Qilian Mountains of the Qinghai-Tibet Plateau. After failure, there is no obvious change in the area corresponding to the twin landslides. Based on InSAR measurements derived from ALOS PALSAR-1 and -2, we observe significant downslope movements of up to 15 mm/day within the twin landslides and up to 5 mm/day in their surrounding slopes. We show that the downslope movements exhibit distinct seasonality; during the late thaw and early freeze season, a mean velocity of about 4 mm/day is observed, while during the late freeze and early thaw season the downslope velocity is nearly inactive. The pronounced seasonality of downslope movements during both pre- and post-failure stages suggest that the occurrence and development of the twin landslide are strongly influenced by freeze-thaw processes. Based on meteorological data, we infer that the occurrence of twin landslides are related to extensive precipitation and warm winters. Based on risk assessment, InSAR measurements, and field investigation, we infer that new slope failure or collapse may occur in the near future, which will probably block the Datong River and cause catastrophic disasters. Our study provides new insight into the failure mechanisms of slopes at the boundaries of permafrost and seasonally frozen ground.
2023-08Impacts of increased winter snowfall and warmer summer air temperatures on nitrous oxide (N2O) dynamics in arctic tundra are uncertain. Here we evaluate surface N2O dynamics in both wet and dry tundra in West Greenland, subjected to field manipulations with deepened winter snow and summer warming. The potential denitrification activity (PDA) and potential net N2O production (N2Onet) were measured to assess denitrification and N2O consumption potential. The surface N2O fluxes averaged 0.49 +/- 0.42 and 2.6 +/- 0.84 mu g N2O-N m- 2 h-1, and total emissions were 212 +/- 151 and 114 +/- 63 g N2O-N scaled to the entire study area of 0.15 km2, at the dry and wet tundra, respectively. The experimental summer warming, and in combination with deepened snow, significantly increased N2O emissions at the dry tundra, but not at the wet tundra. The deepened snow increased winter soil temperatures and growing season soil N availability (DON, NH4+-N or NO3- -N), but no main effect of deepened snow on N2O fluxes was found at either tundra ecosystem. The mean PDA was 5- and 121-fold higher than the N2Onet at the dry and wet tundra, respectively, suggesting that N2O might be reduced and emitted as dinitrogen (N2). Overall, this study reveals modest but evident surface N2O fluxes from tundra ecosystems in Western Greenland, and suggests that projected increases in winter precipitation and summer air temperatures may increase N2O emissions, particularly at the dry tundra dominating in this region.
2023-05-01 Web of ScienceNorthern peatlands are a major component of the global carbon (C) cycle. Widespread climate-driven ecohydrological changes in these ecosystems can have major consequences on their C sequestration function. Here, we synthesize plant macrofossil data from 33 surficial peat cores from different ecoclimatic regions, with high-resolution chronologies. The main objectives were to document recent ecosystem state shifts and explore their impact on C sequestration in high-latitude undisturbed peatlands of northeastern Canada. Our synthesis shows widespread recent ecosystem shifts in peatlands, such as transitions from oligotrophic fens to bogs and Sphagnum expansion, coinciding with climate warming which has also influenced C accumulation during the last similar to 100 years. The rapid shifts towards drier bog communities and an expansion of Sphagnum sect. Acutifolia after 1980 CE were most pronounced in the northern subarctic sites and are concurrent with summer warming in northeastern Canada. These results provide further evidence of a northward migration of Sphagnum-dominated peatlands in North America in response to climate change. The results also highlight differences in the timing of ecosystem shifts among peatlands and regions, reflecting internal peatland dynamics and varying responses of vegetation communities. Our study suggests that the recent rapid climate-driven shifts from oligotrophic fen to drier bog communities have promoted plant productivity and thus peat C accumulation. We highlight the importance of considering recent ecohydrological trajectories when modelling the potential contribution of peatlands to climate change. Our study suggests that, contrary to expectations, peat C sequestration could be promoted in high-latitude non-permafrost peatlands where wet sedge fens may transition to drier Sphagnum bog communities due to warmer and longer growing seasons.
2022-03-01 Web of ScienceBackground: Climate models predict substantial changes in temperature and precipitation patterns across Arctic regions, including increased winter precipitation as snow in the near future. Soil microorganisms are considered key players in organic matter decomposition and regulation of biogeochemical cycles. However, current knowledge regarding their response to future climate changes is limited. Here, we explore the short-term effect of increased snow cover on soil fungal, bacterial and archaeal communities in two tundra sites with contrasting water regimes in Greenland. In order to assess seasonal variation of microbial communities, we collected soil samples four times during the plant-growing season. Results: The analysis revealed that soil microbial communities from two tundra sites differed from each other due to contrasting soil chemical properties. Fungal communities showed higher richness at the dry site whereas richness of prokaryotes was higher at the wet tundra site. We demonstrated that fungal and bacterial communities at both sites were significantly affected by short-term increased snow cover manipulation. Our results showed that fungal community composition was more affected by deeper snow cover compared to prokaryotes. The fungal communities showed changes in both taxonomic and ecological groups in response to climate manipulation. However, the changes were not pronounced at all sampling times which points to the need of multiple sampling in ecosystems where environmental factors show seasonal variation. Further, we showed that effects of increased snow cover were manifested after snow had melted. Conclusions: We demonstrated rapid response of soil fungal and bacterial communities to short-term climate manipulation simulating increased winter precipitation at two tundra sites. In particular, we provide evidence that fungal community composition was more affected by increased snow cover compared to prokaryotes indicating fast adaptability to changing environmental conditions. Since fungi are considered the main decomposers of complex organic matter in terrestrial ecosystems, the stronger response of fungal communities may have implications for organic matter turnover in tundra soils under future climate.
2019-09-18 Web of SciencePeatlands in the Hudson Bay Lowlands (HBL) extend from the sporadic to the continuous permafrost zones. They store similar to 30 Pg of soil carbon, similar to 10% of which is sequestered in permafrost. Palsa fields and peat plateaus are dominant features in the HBL of northern Ontario, but pronounced warming trends in the area are associated with accelerated degradation of these features. This research investigated greenhouse gas production potential (CO2 and CH4) from HBL peatlands near Peawanuck, ON, in the context of rapid palsa degradation. Active layer and permafrost samples from palsas, and samples from fens adjacent to the palsas were collected at sites exhibiting different degradation rates and patterns, identified via the sequential analysis of historical aerial photographs and recent satellite imagery. The samples were incubated anaerobically at 4 degrees C and 14 degrees C to assess CO2 and CH4. In general, CO2 production potential was higher than CH4, however the production of CH4 was extremely sensitive to increased temperatures. Between 4 degrees C and 14 degrees C CH4 production increased by factors ranging from 6 to 90, whereas CO2 production consistently increased by a factor of similar to 2. The production of both gases was higher from fen peat then from permafrost and active layer peat at either temperature when incubated in anaerobic conditions for 225 days. This suggests that higher production rates of CO2 and CH4 from thermokarst features compared to intact permafrost landscapes are not only the result of environmental conditions such as wetness and increased temperatures, but also likely a result of organic matter chemistry and bioavailability associated with increased sedge growth following permafrost degradation.
2019-01-01 Web of ScienceHigh-latitude boreal and arctic surface/inland waters contain sizeable reservoirs of dissolved organic matter (DOM) and trace elements (TE), which are subject to seasonal freezing. Specifically, shallow ponds and lakes in the permafrost zone often freeze solid, which can lead to transformations in the colloidal and dissolved fractions of DOM and TE. Here, we present results from experimental freeze-thaw cycles using iron (Fe)- and DOM-rich water from thaw ponds situated in Stordalen and Storflaket palsa mires in northern Sweden. After ten cycles of freezing, 85% of Fe and 25% of dissolved organic carbon (DOC) were removed from solution in circumneutral fen water (pH 6.9) but a much smaller removal of Fe and DOC (< 7%) was found in acidic bog water (pH 3.6). This removal pattern was consistent with initial supersaturation of fen water with respect to Fe hydroxide and a lack of supersaturation with any secondary mineral phase in the bog water. There was a nearly two- to threefold increase in the low-molecular-weight (LMW) fraction of organic carbon (OC) and several TEs caused by the repeated freeze-thaw cycles. Future increases in the freeze-thaw frequency of surface waters with climate warming may remove up to 25% of DOC in circumneutral organic-rich waters. Furthermore, an increase of LMW OC may result in enhanced carbon dioxide losses from aquatic ecosystems since this fraction is potentially more susceptible to biodegradation.
2018-02-01 Web of ScienceHeterogeneous Holocene climate evolutions in the Northern Hemisphere high latitudes are primarily determined by orbital-scale insolation variations and melting ice sheets. Previous inter-model comparisons have revealed that multi-simulation consistencies vary spatially. We, therefore, compared multiple model results with proxy-based reconstructions in Fennoscandia, Greenland, north Canada, Alaska and Siberia. Our model-data comparisons reveal that data and models generally agree in Fennoscandia, Greenland and Canada, with the early-Holocene warming and subsequent gradual decrease to 0 ka BP (hereinafter referred as ka). In Fennoscandia, simulations and pollen data suggest a 2 degrees C warming by 8 ka, but this is less expressed in chironomid data. In Canada, a strong early-Holocene warming is suggested by both the simulations and pollen results. In Greenland, the magnitude of early-Holocene warming ranges from 6 degrees C in simulations to 8 degrees C in delta O-18-based temperatures. Simulated and reconstructed temperatures are mismatched in Alaska. Pollen data suggest strong early Holocene warming, while the simulations indicate constant Holocene cooling, and chironomid data show a stable trend. Meanwhile, a high frequency of Alaskan peatland initiation before 9 ka can reflect a either high temperature, high soil moisture or large seasonality. In high-latitude Siberia, although simulations and proxy data depict high Holocene temperatures, these signals are noisy owing to a large spread in the simulations and between pollen and chironomid results. On the whole, the Holocene climate evolutions in most regions (Fennoscandia, Greenland and Canada) are well established and understood, but important questions regarding the Holocene temperature trend and mechanisms remain for Alaska and Siberia. (C) 2017 Elsevier Ltd. All rights reserved.
2017-10-01 Web of Science