PM2.5 impacts the atmospheric temperature structure through scattering or absorbing solar radiation, whose concentration and composition can affect the impact. This study calculated the effect of PM2.5 on the temperature structures in the urban centre and the suburbs of Nanjing, as well as their differences. The results show that the optical parameters, atmospheric heating rate, radiative forcing, and temperature are all impacted by the concentration and composition of PM2.5. The uneven distribution of PM2.5 influences the differences in those factors between the urban centre and suburbs. In spring, summer, autumn, and winter, surface temperatures in the urban centre were approximately 283 K, 285 K, 305 K, and 277 K, while those in the suburbs were approximately 282 K, 283 K, 304 K, and 274 K. The urban heat island intensity has been reduced by 0.1-0.4 K due to the presence of PM2.5 in Nanjing. Due to the black carbon component's warming effect on the top of the boundary layer, the impact of PM2.5 on the urban heat island intensity profile drops quickly at the 0.75-1.25 km. PM2.5 may mask the warm city problem and have a more complex impact on the urban climate.
Low- and middle-income countries have the largest health burdens associated with air pollution exposure, and are particularly vulnerable to climate change impacts. Substantial opportunities have been identified to simultaneously improve air quality and mitigate climate change due to overlapping sources of greenhouse gas and air pollutant emissions and because a subset of pollutants, short-lived climate pollutants (SLCPs), directly contribute to both impacts. However, planners in low- and middle-income countries often lack practical tools to quantify the air pollution and climate change impacts of different policies and measures. This paper presents a modelling framework implemented in the Low Emissions Analysis Platform - Integrated Benefits Calculator (LEAP-IBC) tool to develop integrated strategies to improve air quality, human health and mitigate climate change. The framework estimates emissions of greenhouse gases, SLCPs and air pollutants for historical years, and future projections for baseline and mitigation scenarios. These emissions are then used to quantify i) population-weighted annual average ambient PM2.5 concentrations across the target country, ii) household PM2.5 exposure of different population groups living in households cooking using different fuels/technologies and iii) radiative forcing from all emissions. Health impacts (premature mortality) attributable to ambient and household PM2.5 exposure and changes in global average temperature change are then estimated. This framework is applied in Bangladesh to evaluate the air quality and climate change benefits from implementation of Bangladesh's Nationally Determined Contribution (NDC) and National Action Plan to reduce SLCPs. Results show that the measures included to reduce GHGs in Bangladesh's NDC also have substantial benefits for air quality and human health. Full implementation of Bangladesh's NDC, and National SLCP Plan would reduce carbon dioxide, methane, black carbon and primary PM2.5 emissions by 25%, 34%, 46% and 45%, respectively in 2030 compared to a baseline scenario. These emission reductions could reduce population-weighted ambient PM2.5 concentrations in Bangladesh by 18% in 2030, and avoid approximately 12,000 and 100,000 premature deaths attributable to ambient and household PM2.5 exposures, respectively, in 2030. As countries are simultaneously planning to achieve the climate goals in the Paris Agreement, improve air quality to reduce health impacts and achieve the Sustainable Development Goals, the LEAP-IBC tool provides a practical framework by which planners can develop integrated strategies, achieving multiple air quality and climate benefits.