Tibetan glaciers are natural documents of the specific biomass burning biomarker levoglucosan from regions around. However, knowledge about the characteristics of levoglucosan distributions on Tibetan glaciers under the different climate systems is poorly understood. In this study, we detected levoglucosan in snow samples from the Zuoqiupu (ZQP) Glacier affected by the Indian summer monsoon and the Muji (MJ) Glacier dominated by the westerlies. Results found that the ZQP Glacier was more heavily affected by fire emissions than the MJ Glacier, caused by stronger emission sources on the windward direction and shorter transport distances. Elevations for the appearance of levoglucosan maxima on glacier surfaces are roughly around the equilibrium line altitudes. However, levoglucosan displays a wider distribution range on the MJ glacier than on the ZQP glacier due to weaker summer melt. Injection height of fire smokes and glacial melt can affect the altitudinal distribution of levoglucosan. Black carbon and levoglucosan show different temporal variations in snow-pit samples on those two glaciers. The post depositional effects, e.g. the melting and refreezing processes, can modulate the vertical distribution of levoglucosan in snow/ice layers. Our results are helpful for understanding the geochemical behaviors of levoglucosan happened on Tibetan glacier surfaces. (C) 2016 Elsevier Ltd. All rights reserved.
This paper provides an overview and summary of the current state of knowledge regarding critical atmospheric processes that affect the distribution and concentrations of greenhouse gases and aerosols emitted from wildland fires or produced through subsequent chemical reactions in the atmosphere. These critical atmospheric processes include the dynamics of plume rise, chemical reactions involving smoke plume constituents, the long-range transport of smoke plumes, and the potential transport of gases and aerosols from wildland fires into the stratosphere. In the area of plume-rise dynamics, synthesis information is provided on (I) the relevance of plume height for assessing impacts of gases and aerosol from wildland fires on the climate system, (2) recent scientific advances in understanding the role of multiple updraft cores in plume behavior, and (3) some of the current modeling tools and remote sensing monitoring techniques available for predicting and measuring smoke plume heights. In the area of atmospheric chemistry associated with wildland fire emissions, synthesis information is provided on what is currently known about the atmospheric fate of wildland fire smoke-plume constituents and the relationship of their atmospheric chemistry to radiative forcing. Synthesis information related to long-range atmospheric transport of wildland fire emissions is presented and summarizes many of the recent published observational and modeling studies that provide clear evidence of intercontinental, continental, and regional transport of North American fire emissions, including black carbon, to locations far-removed from the fire-event locations. Recent studies are also highlighted that examined the significance of troposphere-stratosphere exchange processes, which can result in the transport of greenhouse gases and aerosols from North American wildland fires into the stratosphere where they can remain for very long periods of time and alter the radiative balance and typical chemical reactions that occur there. Finally, specific research gaps and needs related to plume dynamics, atmospheric transport and deposition processes, and the atmospheric chemistry of wildland fire emissions are identified and discussed. Published by Elsevier B.V.