共检索到 40

This study explored the effects of forest fires on soil microbial activity in forest soils classified by rock origin (igneous, metamorphic, and sedimentary) and stratified by subsoil depth (topsoil, subsoil). Microbial activity, indicated by average well color development (AWCD) and Shannon diversity indices, was higher in undamaged topsoils compared to fire-damaged ones. In contrast, fire-damaged subsoils, particularly in metamorphic and sedimentary soils, exhibited increased microbial activity over time due to organic matter decomposition. A significant increase in substrate utilization was observed in undamaged soils across all rock types (*p < 0.05, **p < 0.01) in topsoil, with sedimentary rock exhibiting the highest microbial diversity based on Shannon indices. The dehydrogenase activity followed a similar pattern, with reduced activity in fire-damaged topsoil but higher activity in damaged metamorphic and sedimentary subsoils. Principal component analysis (PCA) linked microbial indicators (AWCD, Shannon index) to mineral compositions like orthoclase and hornblende, highlighting the role of soil chemistry in shaping microbial responses to fire. These insights advance the understanding of fire-induced changes in soil microbial functions across diverse geological contexts.

期刊论文 2025-06-01 DOI: 10.1002/tqem.70075 ISSN: 1088-1913

The recent increase of the air temperature due to the global climate change is considered as one of the important reasons for the wildfires increase in the world, even in areas where the wildfires are not that common. In addition to the various physical damages adversely affecting the ecological balance, harmful gases and solid particles are released into the atmosphere due to wildfires, causing serious health problems. In this study, impacts of the most serious forest fire in modern history of the country lasting 16 days from 23rd of July 2022 in the National Park Bohemian Switzerland in the D & ecaron;& ccaron;& iacute;n district, Czech Republic, were investigated using remote sensing satellite datasets by cloud-based Google Earth Engine (GEE) platform. The normalized difference moisture index (NDMI), normalized burn ratio index (NBR), normalized difference vegetation index (NDVI), land surface temperature (LST) and soil moisture index (SMI) were calculated from Landsat-8 Operational Land Imager and Thermal Infrared Sensor (OLI and TIRS) dataset for the dates of 31st October 2021, 18th June 2022, and 31st October 2022. Relationship of the remote sensing indices were calculated to estimate the impacts of the wildfire. Furthermore, distribution of nitrogen dioxide (NO2) was extracted using Sentinel-5P TROPOMI (Tropospheric Monitoring Instrument) to observe changes before and after the forest fire in the study region. The burnt area approximately 13.20 km2 from the total area of 79.28 km2 was detected using different time series of the remote sensing indices in the national park.

期刊论文 2025-03-01 DOI: 10.1007/s11069-024-07052-8 ISSN: 0921-030X

AimHigh temperatures during forest fires can cause significant damage to tropical dry forest areas and alter their ecological stability, particularly by affecting seed viability and seedling emergence. This study evaluates the seedling emergence response of 18 dry forest species to fire-simulated temperatures, aiming to assess their potential for restoration in fire-prone Colombian ecosystems.LocationThe seeds used in this study were obtained from three tropical dry forests in Colombia.MethodsA total of 9832 seeds from 18 dry forest species were collected directly from the soil seed bank in three tropical dry forests in Colombia. These seeds were then exposed to simulated forest fire temperatures (100 degrees C, 150 degrees C, and 200 degrees C) for 10 min. Seed viability was analyzed using the 2,3,5-triphenyl tetrazolium chloride reagent (tetrazolium test) and assessed using a generalized linear model. Seedling emergence and mean emergence time were evaluated using one-way analysis of variance (ANOVA) with temperature treatments as factors.ResultsThe study revealed that seedling emergence significantly decreased with higher heat shock temperatures. Notably, Hura crepitans and Parkinsonia aculeata tolerated temperatures up to 100 degrees C, while Caesalpinia pulcherrima and Enterolobium cyclocarpum showed increased emergence at that temperature. Based on their emergence responses, species were classified as stimulated, tolerant, sensitive, or vulnerable. Seed viability declined with rising temperatures, and the mean emergence time increased in species like Cordia alba, Crescentia cujete, and Lonchocarpus violaceus.ConclusionsThis study shows that heat shocks at 150 degrees C and 200 degrees C significantly reduced seed bank viability for most Colombian dry forest species. However, Caesalpinia pulcherrima and Enterolobium cyclocarpum were stimulated by 100 degrees C heat shocks, while Hura crepitans and Parkinsonia aculeata showed no adverse effects. Vulnerable species like Coccoloba acuminata and Pithecellobium dulce exhibited no viable seeds at higher temperatures, suggesting potential local extinctions. These results emphasize the need to focus on heat-tolerant species for restoration efforts in fire-prone ecosystems.

期刊论文 2025-01-01 DOI: 10.1111/avsc.70007 ISSN: 1402-2001

This study analyzes the forest flammability hazard in the south of Tyumen Oblast (Western Siberia, Russia) and identifies variation patterns in fire areas depending on weather and climate characteristics in 2008-2023. Using correlation analysis, we proved that the area of forest fires is primarily affected by maximum temperature, relative air humidity, and the amount of precipitation, as well as by global climate change associated with an increase in carbon dioxide in the atmosphere and the maximum height of snow cover. As a rule, a year before the period of severe forest fires in the south of Tyumen Oblast, the height of snow cover is insignificant, which leads to insufficient soil moisture in the following spring, less or no time for the vegetation to enter the vegetative phase, and the forest leaf floor remaining dry and easily flammable, which contributes to an increase in the fire area. According to the estimates of the CMIP6 project climate models under the SSP2-4.5 scenario, by the end of the 21st century, a gradual increase in the number of summer temperatures above 35 degrees C is expected, whereas the extreme SSP5-8.5 scenario forecasts the tripling in the number of such hot days. The forecast shows an increase of fire hazardous conditions in the south of Tyumen Oblast by the late 21st century, which should be taken into account in the territory's economic development.

期刊论文 2024-12-01 DOI: 10.3390/fire7120466 ISSN: 2571-6255

Postfire management actions are used to mitigate damage caused by wildfires. Salvage logging, often employed to restore ecosystem functions in burnt stands, plays an essential role in reducing economic losses and the burn severity of future wildfires. However, its ecological implications for soil functionality still need to be understood, especially in the Mediterranean basin, which is prone to erosion and desertification. This study aimed to investigate the effects of fire on (i) soil organic matter (SOM) quality and composition using differential scanning calorimetry-thermogravimetry (DSC-TG) and solid-state nuclear magnetic resonance (C-13 CPMAS NMR) and (ii) phosphorus (P) forms using solid-state( 31) P NMR spectroscopy in a wildfire that affected 3200 ha in southeastern Spain in July 2017. One year after the fire, we monitored four Pinus halepensis Mill. stand categories based on soil burn severity (SBS): unburnt, low SBS, high SBS and high SBS areas with salvage logging (n=36, nine plots per SBS level). We collected soil samples and analysed soil pH, SOM content and SOM quality, along with biological activity indicators (carbon biomass, basal respiration, beta-glucosidase, phosphatase activities) and P forms. We ran ANOVA statistical tests to identify significant differences in soil properties among SBS levels. We also established general linear regressions of thermo-recalcitrance values and aromaticity with biological soil quality indices to compare both techniques for detecting changes in SOM quality and composition. The results indicated that fire increased soil pH (up to 0.3), particularly in the plots with higher SBS levels. SOM decreased significantly with increasing SBS level (down to < 5 % at the high SBS level), with a shift from labile compounds (carbohydrates) to more recalcitrant ones (aromatics). Organic P forms were depleted, while orthophosphate levels rose, increasing the risk of irreversible fixation. This study also highlights that DSC-TG is a cost-effective technique for assessing SOM quality changes. Understanding these effects is essential for developing policies to conserve and restore fire- affected areas and to promote practices that enhance soil functionality and resilience.

期刊论文 2024-12-01 DOI: 10.1016/j.foreco.2024.122344 ISSN: 0378-1127

Forest fires cause serious damage to mountain landforms and trigger frequent post-fire debris flows. Although post-fire debris flow exhibits time evolution, the key factors controlling its evolution remain unclear. A detailed field investigation, rainfall data collection and remote sensing analysis were conducted to study the debris flow events following the 3.08 forest fire in Xiangjiao gully. The destructive effect of forest fires, the control factors and inherent evolution mechanism of post-fire debris flow were explored. The results highlight that the great disturbance of forest fires to the hydrological response and material source supply conditions promote the outbreak of debris flows. In the rapid response stage of fire, the internal driving force of debris flow evolution is the self-healing of hydrological response characteristics of the basin, including material depletion, particle coarsening and vegetation restoration. In the long-term impact stage, the evolution of debris flows is mainly controlled by factors such as a decrease in root-soil strength caused by root rot, multi-stage gully bank landslide activity, and blockage of woody debris. A conceptual model for the evolution of post-fire debris flows is proposed based on the above evolution characteristic analysis. In particularly, this study emphasizes the catastrophic effect of woody debris during the evolution of post-fire debris flows. The research results provide scientific basis for long-term debris flow risk assessment and mitigation design in recently burnt areas.

期刊论文 2024-11-01 DOI: 10.1016/j.catena.2024.108353 ISSN: 0341-8162

We tested the hypothesis that the number of seedlings from the soil seed bank (SSB) in forests polluted by heavy metals and disturbed by recent fires decreases. It was also assumed that the consequences of pollution and fires for the soil seed bank are additive. We estimated the number of seedlings from the SSB of pine forests located near the Karabash copper smelter (KCS) (contaminated by Cu, Zn, Pb, and Cd) and from uncontaminated forests of the Ilmen State Reserve (ISR). In both areas, samples of the forest litter and humus horizon were taken from forests recently exposed to ground fires and long-term unburned forests. Samples were exhibited from June to September, conducting seven rounds of counting seedlings. Small peculiarities of the emergence of seedlings on the samples of the forest litter and the humus horizon were established. However, the regularities of the reaction of SSB to pollution and fire disturbances did not depend on the soil horizon. The number of seedlings on substrates from contaminated forests was 5-8 times lower than the number of seedlings on substrates from background forests. A decrease in the number of seedlings on polluted substrates was accompanied by an increase in the share of dicots in the total number of seedlings. The relationship between the number of seedlings and the age of fires was not found. The additivity of the consequences of pollution and fires has also not been established. Of the two types of damage, pollution and fires, the pollution factor is of leading importance for SSBs. The results indicate a low recovery capacity of the herb-shrub layer of polluted forests.

期刊论文 2024-08-01 DOI: 10.1134/S1067413624602069 ISSN: 1067-4136

Wildfires have short- and long-term impacts on the geoenvironment, including the changes to biogeochemical and mechanical properties of soils, landfill stability, surface- and groundwater, air pollution, and vegetation. Climate change has increased the extent and severity of wildfires across the world. Simultaneously, anthropogenic activities-through the expansion of urban areas into wildlands, abandonment of rural practices, and accidental or intentional fire-inception activities-are also responsible for a majority of fires. This paper provides an overall review and critical appraisal of existing knowledge about processes induced by wildfires and their impact on the geoenvironment. Burning of vegetation leads to loss of root reinforcement and changes in soil hydromechanical properties. Also, depending on the fire temperature, soil can be rendered hydrophobic or hydrophilic and compromise soil nutrition levels, hinder revegetation, and, in turn, increase post-fire erosion and the debris flow susceptibility of hillslopes. In addition to direct hazards, wildfires pollute air and soil with smoke and fire suppression agents releasing toxic, persistent, and relatively mobile contaminants into the geoenvironment. Nevertheless, the mitigation of wildfires' geoenvironmental impacts does not fit within the scope of this paper. In the end, and in no exhaustive way, some of the areas requiring future research are highlighted.

期刊论文 2024-08-01 DOI: 10.3390/fire7080295 ISSN: 2571-6255

Forest fires can profoundly impact the hydrological response of river basins, modifying vegetation characteristics and soil infiltration. This results in a significant increase in surface flow and channel runoff. In response to these effects, many researchers from different areas of earth sciences are committed to determining emergency measures to rehabilitate river basins, intending to restore their functions and minimize damage to soil resources. This study aims to analyze the mapping detection capacity of burned areas in a river basin in Brazil based on images acquired by AMAZ & Ocirc;NIA-1/WFI and the AQ1KM product. The effectiveness of the AMAZ & Ocirc;NIA-1 satellite in this regard is evaluated, given the importance of the subject and the relatively recent introduction of the satellite. The AQ1KM data were used to analyze statistical trends and spatial patterns in the area burned from 2003 to 2023. The U-Net architecture was used for training and classification of the burned area in AMAZ & Ocirc;NIA-1 images. An increasing trend in burned area was observed through the Mann-Kendall test map and Sen's slope, with the months of the second semester showing a greater occurrence of burned areas. The NIR band was found to be the most sensitive spectral resource for detecting burned areas. The AMAZ & Ocirc;NIA-1 satellite demonstrated superior performance in estimating thematic accuracy, with a correlation of above 0.7 achieved in regression analyses using a 10 km grid cell resolution. The findings of this study have significant implications for the application of Brazilian remote sensing products in ecology, water resources, and river basin management and monitoring applications.

期刊论文 2024-07-01 DOI: 10.3390/fire7070238 ISSN: 2571-6255

Wildfires play a dual role in ecosystems by providing ecological benefits while posing catastrophic events; they also inflict non-catastrophic damage and yield long-term effects on biodiversity, soil quality, and air quality, among other factors, including public health. This study analysed the key determinants of wildland fires in Spain using openly available spatial data from 2008 to 2021, including fire perimeters, bioclimatic variables, topography, and socioeconomic datasets, at a resolution of 1 km(2). Our methodology combined principal component analysis (PCA), linear regression analysis, and one-way analysis of variance (ANOVA). Our findings show that scrub/herbaceous vegetation (average 63 +/- 1.45% SE) and forests (average 19 +/- 0.76% SE) have been highly susceptible to wildfires. The population density exhibited a robust positive correlation with wildfire frequency (R-2 = 0.88, p < 0.0001). Although the study provides insights into some fire-related climatic drivers over Spain, it includes only temperature- and precipitation-based variables and does not explicitly consider fuel dynamics. Therefore, a more advanced methodology should be applied in the future to understand the local specifics of regional wildfire dynamics. Our study identified that scrub/herbaceous areas and forests near densely populated regions should be prioritised for wildfire management in Spain, particularly under changing climate conditions.

期刊论文 2024-06-01 DOI: 10.3390/land13060762
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 末页
  • 跳转
当前展示1-10条  共40条,4页