共检索到 24

This study presents a novel micromorphic continuum model for sand-gravel mixtures with low gravel contents, which explicitly accounts for the influences of the particle size distribution, gravel content, and fabric anisotropy. This model is rigorously formulated based on the principle of macro-microscopic energy conservation and Hamilton's variational principle, incorporating a systematic analysis of the kinematics of coarse and fine particles as well as macro-microscopic deformation differentials. Dispersion equations for plane waves are derived to elucidate wave propagation mechanisms. The results demonstrate that the model effectively captures normal dispersion characteristics and size-dependent effects on wave propagation in these mixtures. In long-wavelength regimes, wave velocities are governed by macroscopic properties, whereas decreasing wavelengths induce interparticle scattering and multiple reflections, attenuating velocities or inhibiting waves, especially when wavelengths approach interparticle spacing. The particle size, porosity, and stiffness ratio primarily influence the macroscopic average stiffness, exhibiting consistent effects on dispersion characteristics across all wavelength domains. In contrast, the particle size ratio and gravel content simultaneously influence both macroscopic mechanical properties and microstructural organization, leading to opposing trends across different wavelength ranges. Model validation against experiments confirms its exceptional predictive ability regarding wave propagation characteristics, including relationships between lowpass threshold frequency, porosity, wave velocity, and coarse particle content. This study provides a theoretical foundation for understanding wave propagation in sand-gravel mixtures and their engineering applications.

期刊论文 2025-10-01 DOI: 10.1016/j.compgeo.2025.107351 ISSN: 0266-352X

Soil aggregate stability and pore structure are key indicators of soil degradation. Waves generated by the water-level fluctuations could severely deteriorate soil aggregates, which eventually induce soil erosion and several other environmental issues such as sedimentation and flooding. However, due to limited availability of the hydrological alteration data, there is a limited understanding of soil aggregates, intra-aggregate pore dynamics, and their relationships under periodically flooded soils. The present study has relied on long-term hydrological alteration data (2006-2020) to explore the impacts of inundation and exposure on soil aggregates and pore structure variations. Soil samples from increasing elevations (155, 160, 163, 166, 169, and 172 m) in the water-level fluctuation zone of the Three Gorges Reservoir were exposed to wet-shaking stress and determined soil structural parameters. The overall inundation and exposure ratio (OvI/E) gradually decreased from 1.87 in the lowest to 0.27 in the highest elevation, respectively. Predominant distribution of macropores was recorded in lower elevations, while micropores were widely distributed in the upper elevations. The mean weight diameter (MWD) was significantly lower in the lower (2.4-3.7 mm) compared to upper (5.3-6.0 mm) elevations. The increase in MWD has increased the proportion of micropores (PoN < 50 mu m), with R-2 = 0.59. This could suggest that the decrease in flooding intensity can create favorable conditions for plant roots growth. The strong flooding stress in lower elevations (i.e., higher values of the OvI/E) accelerated the disintegration of soil aggregates and considerably increased the formation of macropores due to slaking and cracking. The findings of the present study emphasize the need to restore degraded soils in periodically submerged environments by implementing vegetation restoration measures. This could enhance and sustain aggregate stability, which was also proved to increase functional pores under hydrological alterations.

期刊论文 2025-06-19 DOI: 10.1002/ldr.5673 ISSN: 1085-3278

With the continued development of water resources in Southwest China, fluctuations in water levels and rainfall have triggered numerous landslides. The potential hazards posed by these events have garnered considerable attention from the academic community, making it imperative to elucidate the landslide mechanisms under the combined influence of multiple factors. This study integrates laboratory tests and numerical simulations to explore the instability mechanisms of landslides under the combined effects of rainfall and fluctuating water levels, as well as to compare the impacts of different factors. Results indicate that the sensitivity of landslide deformation decreases as the number of water level fluctuations increases, exhibiting a gradually stabilizing tendency. However, the occurrence of a heavy rainfall event can reactivate previously stabilized landslides by increasing pore water pressure and establishing a positive feedback loop with rainfall infiltration. This process reduces boundary constraints at the toe of the slope, promotes the development of an overhanging surface, and ultimately leads to overall instability and landslide disaster. Under the same rainfall intensities, the presence of water level fluctuations prior to rainfall significantly shortens the time for the landslide to reach a critical state. The key mechanisms contributing to landslide failure include terrain modification, fine particle erosion, and outward water pressure, all of which generates substantial destabilizing forces. This research offers valuable insights for the monitoring, early warning, and risk mitigation of landslides that have already experienced some degree of deformation in hydropower reservoir areas.

期刊论文 2025-06-05 DOI: 10.1016/j.enggeo.2025.108092 ISSN: 0013-7952

Direct shear creep tests have scarcely been used for long-term creep behavior studies of landslides in the Three Gorges reservoir area. In this study, based on field investigations and monitoring of the Huangtupo Landslide, direct shear creep tests were performed on the sliding zone soil of Riverside Slump #1, and the creep characteristics of sliding zone soil after varying cycles of reservoir water level fluctuation were studied. Using the creep results, the Mohr-Coulomb parameters were obtained by numerical simulation, and the deformation pattern of the reservoir landslide was analyzed. The results show that the direct shear creep of sliding zone soil can mainly be divided into stages of attenuation creep and steady-state creep. Under the same shear stress, with the increase of loading-unloading cycles N, the soil's strain and shear strain rate in the sliding zone decreased accordingly, and the long-term strength gradually improved. As the shear stress increases, the shear strain rate increases and the creep of the soil in the sliding zone has an obvious time effect. Our numerical simulation results showed good agreement with both the landslide deformation monitoring data and direct shear testing data. The Burgers model is suitable for describing creep deformation of landslides under fluctuating reservoir water levels. Under high shear stress, the fitted curve showcased both attenuation and constant velocity characteristics. Numerical simulation and burger model can reflect the direct shear creep test characteristics well. These research findings can provide an important reference on the creep characteristics of landslides, potentially aiding geotechnical engineering applications.

期刊论文 2025-04-01 DOI: 10.1007/s10346-024-02435-1 ISSN: 1612-510X

The weak mechanical properties of weak interlayers are crucial for controlling landslide deformation and failure under water level fluctuation. The instability and failure of landslides in reservoirs can lead to unpredictable consequences. In this study, the reservoir bank landslide with a weak interlayer was selected as the research subject. The material composition, structural characteristics, mechanical properties, and permeability of the landslide were determined through field investigations and tests. Additionally, a physical model test was conducted to explore the groundwater variation rules and deformation failure modes of landslides with weak interlayers under different water level fluctuation rates. The results indicate that due to the low permeability of the interlayer, there was a significant lag in monitoring data such as pore water pressure within the interlayer under the same water level fluctuation rate. At the same point, the faster the water level fluctuation rate, the greater the degree of lag. The deformation and failure mode of landslide with weak interlayer under reservoir water level fluctuation can be summarized as the following five stages: slope toe erosion stage, cracks on slope surface and interlayer stage, micro-collapse of slope toes and crack expansion of slope surface and interlayer stage, local micro-collapse of slope toe and crack penetration of slope body stage, crack development leads to landslide of slope body stage. This study provides theoretical support for prevention and control of landslides with weak interlayers in the gravel soils of reservoirs.

期刊论文 2025-04-01 DOI: 10.1007/s10064-025-04210-5 ISSN: 1435-9529

Seepage deformation in sand results from complex water-soil interactions, which are the primary reasons of sand surface collapse, as well as instability and deformation in dam foundations, building foundations, and slopes. Frequent fluctuations in groundwater levels cause changes in the direction, velocity, and pore water pressure of groundwater within the sand. Further research is essential to fully understand the characteristics and mechanisms of sand seepage deformation under varying groundwater conditions. In this study, natural undisturbed sand samples were collected. Laboratory seepage deformation tests were conducted to simulate continuous rises and falls in groundwater levels, exploring the response characteristics of internal erosion and hydraulic behavior of the sand under varying groundwater flow rates and directions. The results show that: As groundwater flow rate increases, the sand undergoes multiple episodes of seepage deformation, which includes the processes of structural stability, seepage deformation, and seepage failure. Initially, the hydraulic gradient for seepage deformation is small, and the particles carried by seepage are small. With a further increase in groundwater flow velocity, the hydraulic gradient rises, larger sand particles are migrated by seepage, and seepage failure may eventually occur. When the karst groundwater level is lower than the elevation of the sand bottom (H-2 < z(2)) and the sand bottom is in a negative pressure state, the hydraulic gradient of seepage deformation is usually smaller than that observed in the other two states of positive pressure. In these cases, pore water pressure exerts an upward buoyant force, while in the negative pressure state, the pore water pressure transforms into downward suction. This downward suction aligns with the direction of gravitational forces and downward seepage force acting on the sand, making seepage deformation of the sand more likely. Sands with greater unevenness, finer particle, and lower density are more prone to seepage deformation but failure at different hydraulic gradients.

期刊论文 2025-03-01 DOI: 10.1016/j.jhydrol.2024.132448 ISSN: 0022-1694

Background and aimsFrequent extreme weather poses significant threats to agricultural production and biological communities. Understanding the microbiological mechanisms that determine plant health under warming fluctuations (including short-term warming (WM, 45 degrees C for lasting 10 days) and recovery from warming (RE, the end of warming and returning to 25 degrees C for lasting 10 days)) is crucial for achieving sustainable agricultural development.MethodsHere, we explored the effects of warming fluctuations on the plant health index (PHI) and on the bacterial and fungal communities in both bulk soil and rhizosphere.ResultsWarming fluctuations did not change the rhizosphere bacterial or fungal alpha diversity but did affect the community structure and composition in both the bulk soil and rhizosphere. Moreover, warming fluctuations altered the stability and complexity of the bacterial and fungal networks, and the changes exhibited obvious differences between the bulk soil and rhizosphere. Bacterial and bulk soil fungal taxa enhanced their cooperation to adapt to WM, while rhizosphere fungal taxa became more competitive. In addition, warming fluctuations reduced the wheat health index and caused irreversible damage. Biotic factors, particularly core taxa such as Nocardioidaceae, Trueperaceae, Microbacteriaceae, and 67-14 of bacteria, as well as Diversisporaceae, Glomeraceae, Entolomataceae, and Orbiliales of fungi, have emerged as the main driving forces affecting wheat health. These core taxa can directly influence wheat health or indirectly regulate network complexity and competition among taxa.ConclusionsOur study underscores the significance of core taxa in modulating soil microbiome dynamics and safeguarding plant health, offering valuable insights and strategies for enhancing crop productivity and fostering sustainable agricultural development amidst increasingly frequent extreme weather events.

期刊论文 2025-02-20 DOI: 10.1007/s11104-025-07293-x ISSN: 0032-079X

AimsEnvironmental stresses can influence root mechanical strength, the impact of submersion of the water level fluctuation zone on the root mechanical strength of Cynodon dactylon was evaluated in this study.MethodsVariations in the physicochemical properties (root weight density and root activity), mechanical strengths (tensile and pullout strength) and failure types of C. dactylon roots were investigated using a submersion experiment with 8 durations (0, 15, 30, 60, 90, 120, 150, 180 d), with a treatment without submersion serving as the control (CK). Additionally, corresponding variation in the microstructure of the roots was observed.ResultsThe root weight density, root activity, root tensile strength and pullout strength of C. dactylon rapidly decreased, followed by a gradual decrease with increasing duration, and the reductions during the first 15 d of submersion accounted for 65.15%, 75.86%, 61.14% and 68.26% of the maximum reduction during the submersion process, respectively. Negative power function relationships were found between root mechanical strength and root diameter. Submersion increased the proportion of fracture failures during the pullout process. Moreover, the influence of submersion on root mechanical strength and failure type was regulated by a reduction in root activity.ConclusionsSubmersion deteriorates the mechanical properties of C. dactylon roots and alters their failure type.

期刊论文 2025-01-14 DOI: 10.1007/s11104-025-07211-1 ISSN: 0032-079X

The construction of the Three Gorges Reservoir dam in China has led to an increase in reservoir landslide events. To mitigate these geohazards, multiple rows of stabilizing piles (MRSP) have been employed to stabilize massive reservoir landslides. This study utilizes centrifuge and numerical modeling to investigate the behavior of unreinforced landslides and MRSP-reinforced landslides in reservoir areas. The failure mechanisms of unreinforced landslides, as well as the mechanical behavior and stabilizing mechanisms of MRSP under reservoir water level (RWL) fluctuations, are examined. The results indicate that elevated downward seepage forces contribute to prefailure sliding, but are not the sole cause of catastrophic failure. Instead, rapid pre-failure sliding leads to soil particle compression and crushing in the saturated sliding zone, resulting in excess pore water pressure and accelerated overall failure. This excess pore water pressure-dependent mechanism explains the observed steplike deformation pattern and rapid failure pattern in reservoir landslides. Furthermore, the study reveals the formation of soil arches between adjacent MRSP groups, causing stress concentration on boundary columns and necessitating reinforcement. The finding challenges traditional one-dimensional load transfer ratios, advocating for a two-dimensional approach that accounts for variations across rows and columns. Notably, the study also highlights significant variations in load transfer laws within MRSP under different RWL operations, emphasizing the need for a more nuanced understanding of MRSP behavior.

期刊论文 2024-12-01 DOI: 10.1016/j.enggeo.2024.107806 ISSN: 0013-7952

This paper aims to investigate the effects of soil penetration resistance, tillage depth, and operating speeds on the deformation and fatigue of the subsoiling shovel based on the real-time measurement of tractor-operating conditions data. Various types of sensors, such as force, displacement, and angle, were integrated. The software and hardware architectures of the monitoring system were designed to develop a field operation condition parameter monitoring system, which can measure the tractor's traction force of the lower tie-bar, the real-time speed, the latitude and longitude, tillage depth, and the strain of the subsoiling shovel and other condition parameters in real-time. The time domain extrapolation method was used to process the measured data to obtain the load spectrum. The linear damage accumulation theory was used to calculate the load damage of the subsoiling shovel. The magnitude of the damage value was used to characterize the severity of the operation. The signal acquisition test and typical parameter test were conducted for the monitoring system, and the test results showed that the reliability and accuracy of the monitoring system met the requirements. The subsoiling operation test of the system was carried out, which mainly included two kinds of soil penetration resistances (1750 kPa and 2750 kPa), three kinds of tillage depth (250 mm, 300 mm, and 350 mm), and three kinds of operation speed (4 km/h low speed, 6 km/h medium speed, and 8 km/h high speed), totaling 18 kinds of test conditions. Eventually, the effects of changes in working condition parameters of the subsoiling operation on the overall damage of subsoiling shovels and the differences in damage occurring between the front and rear rows of subsoiling shovels under the same test conditions were analyzed. The test results show that under the same soil penetration resistance, the overall damage sustained by the subsoiling shovels increases regardless of the increase in the tillage depth or operating speed. In particular, the increase in the tillage depth increased the severity of subsoiling shovel damage by 19.73%, which was higher than the 17.48% increase due to soil penetration resistance and the 13.07% increase due to the operating speed. It should be noted that the front subsoiling shovels consistently sustained more damage than the rear, and the difference was able to reach 16.86%. This paper may provide useful information for subsoiling operations, i.e., the operational efficiency and the damage level of subsoiling shovels should be considered.

期刊论文 2024-09-01 DOI: 10.3390/agriculture14091604
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共24条,3页