The deformation energy (Wd) of soil-like tectonic coal is crucial for investigating the mechanism of coal and gas outbursts. Tectonic coal has a significant nonlinear constitutive relationship, which makes traditional elastic-based models for computing Wd unsuitable. Inspired by critical state soil mechanics, this study theoretically established a new calculation model of Wd suitable for the coal with nonlinear deformation characteristics. In the new model, the relationship between energy and stress no longer follows the square law (observed in traditional linear elastic models) but exhibits a power function, with the theoretical value of the power exponent ranging between 1 and 2. Hydrostatic cyclic loading and unloading experiments were conducted on four groups of tectonic coal samples and one group of intact coal samples. The results indicated that the relationship between Wd and stress for both intact and tectonic coal follows a power law. The exponents for intact and tectonic coal are close to 2 and 1, respectively. The stress-strain curve of intact coal exhibits small deformation and linear characteristics, whereas the stress-strain curves of tectonic coal show large deformation and nonlinear characteristics. The study specifically investigates the role of coal viscosity in the cyclic loading/unloading process. The downward bending in the unloading curves can be attributed to the time-dependent characteristics of coal, particularly its viscoelastic behavior. Based on experimental statistics, the calculation model of Wd was further simplified. The simplified model involves only one unknown parameter, which is the power exponent between Wd and stress. The measured Wd of the coal samples increases with the number of load cycles. This phenomenon is attributed to coal's viscoelastic deformation. Within the same stress, the Wd of tectonic coal is an order of magnitude greater than that of intact coal. The calculation model of Wd proposed in this paper provides a new tool for studying the energy principle of coal and gas outbursts. (c) 2024 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Incorrect use of neonicotinoid pesticides poses a serious threat to human and pollinator health, as these substances are commonly present in bee products and even drinking water. To combat this threat, the study developed a new method of degrading the pesticide imidacloprid using surface discharge cold plasma oxidation technology. The study showed that this method achieved a very high efficiency of imidacloprid degradation of 91.4%. The main reactive oxygen species (H2O2, O3, & sdot;OH, O2- , 1O2) effectively participated in the decomposition reaction of imidacloprid. Reactive oxygen species were more sensitive to the structure of the nitroimine group. Density functional theory (DFT) further explored the sites of reactive oxygen species attack on imidacloprid and revealed the process of energy change of attacking imidacloprid. In addition, a degradation pathway for imidacloprid was proposed, mainly involving reactive oxygen species chemisorption, a ring-opening intermediate, and complete cleavage of the nitroimine group structure. Model predictions indicated that acute oral and developmental toxicity were significantly reduced after cold plasma treatment, as confirmed by insect experiments. Animal experiments have shown that plasma treatment reduces imidacloprid damage to mice hippocampal tissue structure and inhibits the reduction of brain-derived neurotrophic factor content, thus revealing the detoxification mechanism of the body.