In many soil processes, including solute and gas dynamics, the architecture of intra-aggregate pores is a crucial component. Soil management practices and wetting-drying (W-D) cycles, the latter having a significant impact on pore aggregation, are two key factors that shape pore structure. This study examines the effects of W-D cycles on the architecture of intra-aggregate pores under three different soil management systems: no-tillage (NT), minimum tillage (MT), and conventional tillage (CT). The soil samples were subjected to 0 and 12 W-D cycles, and the resulting pore structures were scanned using X-ray micro-computed tomography, generating reconstructed 3D volumetric data. The data analyses were conducted in terms of multifractal spectra, normalized Shannon entropy, lacunarity, porosity, anisotropy, connectivity, and tortuosity. The multifractal parameters of capacity, correlation, and information dimensions showed mean values of approximately 2.77, 2.75, and 2.75 when considering the different management practices and W-D cycles; 3D lacunarity decreased mainly for the smallest boxes between 0 and 12 W-D cycles for CT and NT, with the opposite behavior for MT. The normalized 3D Shannon entropy showed differences of less than 2% before and after the W-D cycles for MT and NT, with differences of 5% for CT. The imaged porosity showed reductions of approximately 50% after 12 W-D cycles for CT and NT. Generally, the largest pores (>0.1 mm3) contributed the most to porosity for all management practices before and after W-D cycles. Anisotropy increased by 9% and 2% for MT and CT after the cycles and decreased by 23% for NT. Pore connectivity showed a downward trend after 12 W-D cycles for CT and NT. Regarding the pore shape, the greatest contribution to porosity and number of pores was due to triaxial-shaped pores for both 0 and 12 W-D cycles for all management practices. The results demonstrate that, within the resolution limits of the microtomography analysis, pore architecture remained resilient to changes, despite some observable trends in specific parameters.
Cracking behavior can reduce soil hydraulic and mechanical properties and is a preferential pathway for water flow and pollutant transportation, resulting in polluted environment, such as application to landfill liners and capping. Recently, researchers have advocated the use of waste materials for clay mixtures using various measurement and analysis methods. Therefore, this study aims to conduct a bibliometric analysis of the scientific literature published between 2002 and 2021 obtained from Scopus to quantitatively identify research trends, key research areas, and future research paths in this field on desiccation and crack behavior using waste materials as landfill liners. The VOS viewer software was used to analyze 41 articles in which the paper selection process was filtered. The results showed that the fly ash mixture's application as a landfill liner could reduce cracking significantly. Furthermore, fractal analysis and X-ray computed tomography measurements have proven to be good candidates for measuring cracks because they are the most accurate for calculating the crack value. Waste materials such as fly ash can be applied as landfill liners with other materials, such as bentonite and coconut coir fibers. This study is beneficial for improving the design and selecting the appropriate materials for landfill liners.