The freeze-thaw cycle of near-surface soils significantly affects energy and water exchanges between the atmosphere and land surface. Passive microwave remote sensing is commonly used to observe the freeze-thaw state. However, existing algorithms face challenges in accurately monitoring near-surface soil freeze/thaw in alpine zones. This article proposes a framework for enhancing freeze/thaw detection capability in alpine zones, focusing on band combination selection and parameterization. The proposed framework was tested in the three river source region (TRSR) of the Qinghai-Tibetan Plateau. Results indicate that the framework effectively monitors the freeze/thaw state, identifying horizontal polarization brightness temperature at 18.7 GHz (TB18.7H) and 23.8 GHz (TB23.8H) as the optimal band combinations for freeze/thaw discrimination in the TRSR. The framework enhances the accuracy of the freeze/thaw discrimination for both 0 and 5-cm soil depths. In particular, the monitoring accuracy for 0-cm soil shows a more significant improvement, with an overall discrimination accuracy of 90.02%, and discrimination accuracies of 93.52% for frozen soil and 84.68% for thawed soil, respectively. Furthermore, the framework outperformed traditional methods in monitoring the freeze-thaw cycle, reducing root mean square errors for the number of freezing days, initial freezing date, and thawing date by 16.75, 6.35, and 12.56 days, respectively. The estimated frozen days correlate well with both the permafrost distribution map and the annual mean ground temperature distribution map. This study offers a practical solution for monitoring the freeze/thaw cycle in alpine zones, providing crucial technical support for studies on regional climate change and land surface processes.
The freeze-thaw (F-T) cycle of the active layer (AL) causes the frost heave and thaw settlement deformation of the terrain surface. Accurately identifying its amplitude and time characteristics is important for climate, hydrology, and ecology research in permafrost regions. We used Sentinel-1 SAR data and small baseline subset-interferometric synthetic aperture radar (SBAS-InSAR) technology to obtain the characteristics of F-T cycles in the Zonag Lake-Yanhu Lake permafrost-affected endorheic basin on the Qinghai-Tibet Plateau from 2017 to 2019. The results show that the seasonal deformation amplitude (SDA) in the study area mainly ranges from 0 to 60 mm, with an average value of 19 mm. The date of maximum frost heave (MFH) occurred between November 27th and March 21st of the following year, averaged in date of the year (DOY) 37. The maximum thaw settlement (MTS) occurred between July 25th and September 21st, averaged in DOY 225. The thawing duration is the thawing process lasting about 193 days. The spatial distribution differences in SDA, the date of MFH, and the date of MTS are relatively significant, but there is no apparent spatial difference in thawing duration. Although the SDA in the study area is mainly affected by the thermal state of permafrost, it still has the most apparent relationship with vegetation cover, the soil water content in AL, and active layer thickness. SDA has an apparent negative and positive correlation with the date of MFH and the date of MTS. In addition, due to the influence of soil texture and seasonal rivers, the seasonal deformation characteristics of the alluvial-diluvial area are different from those of the surrounding areas. This study provides a method for analyzing the F-T cycle of the AL using multi-temporal InSAR technology.
Freeze-thaw cycles (FTC) alter soil function through changes to physical organization of the soil matrix and biogeochemical processes. Understanding how dynamic climate and soil properties influence FTC may enable better prediction of ecosystem response to changing climate patterns. In this study, we quantified FTC occurrence and frequency across 40 National Ecological Observatory Network (NEON) sites. We used site mean annual precipitation (MAP) and mean annual temperature (MAT) to define warm and wet, warm and dry, and cold and dry climate groupings. Site and soil properties, including MAT, MAP, maximum-minimum temperature difference, aridity index, precipitation as snow (PAS), and organic mat thickness, were used to characterize climate groups and investigate relationships between site properties and FTC occurrence and frequency. Ecosystem-specific drivers of FTC provided insight into potential changes to FTC dynamics with climate warming. Warm and dry sites had the most FTC, driven by rapid diurnal FTC close to the soil surface in winter. Cold and dry sites were characterized by fewer, but longer-duration FTC, which mainly occurred in spring and increased in number with higher organic mat thickness (Spearman's rho = 0.97, p < 0.01). The influence of PAS and MAT on the occurrence of FTC depended on climate group (binomial model interaction p (chi(2)) < 0.05), highlighting the role of a persistent snowpack in buffering soil temperature fluctuations. Integrating ecosystem type and season-specific FTC patterns identified here into predictive models may increase predictive accuracy for dynamic system response to climate change.
The Qilian Mountains, located on the northeastern edge of the Qinghai-Tibet Plateau, are characterized by unique high-altitude and cold-climate terrain, where permafrost and seasonally frozen ground are extensively distributed. In recent years, with global warming and increasing precipitation on the Qinghai-Tibet Plateau, permafrost degradation has become severe, further exacerbating the fragility of the ecological environment. Therefore, timely research on surface deformation and the freeze-thaw patterns of alpine permafrost in the Qilian Mountains is imperative. This study employs Sentinel-1A SAR data and the SBAS-InSAR technique to monitor surface deformation in the alpine permafrost regions of the Qilian Mountains from 2017 to 2023. A method for spatiotemporal interpolation of ascending and descending orbit results is proposed to calculate two-dimensional surface deformation fields further. Moreover, by constructing a dynamic periodic deformation model, the study more accurately summarizes the regular changes in permafrost freeze-thaw and the trends in seasonal deformation amplitudes. The results indicate that the surface deformation time series in both vertical and east-west directions obtained using this method show significant improvements in accuracy over the initial data, allowing for a more precise reflection of the dynamic processes of surface deformation in the study area. Subsidence is predominant in permafrost areas, while uplift mainly occurs in seasonally frozen ground areas near lakes and streams. The average vertical deformation rate is 1.56 mm/a, with seasonal amplitudes reaching 35 mm. Topographical (elevation; slope gradient; aspect) and climatic factors (temperature; soil moisture; precipitation) play key roles in deformation patterns. The deformation of permafrost follows five distinct phases: summer thawing; warm-season stability; frost heave; winter cooling; and spring thawing. This study enhances our understanding of permafrost deformation characteristics in high-latitude and high-altitude regions, providing a reference for preventing geological disasters in the Qinghai-Tibet Plateau area and offering theoretical guidance for regional ecological environmental protection and infrastructure safety.
Seasonally frozen ground (SFG) is a significant component of the cryosphere, and its extent is gradually increasing due to climate change. The hydrological influence of SFG is complex and varies under different climatic and physiographic conditions. The summer rainfall dominant climate pattern in Qinghai Lake Basin (QLB) leads to a significantly different seasonal freeze-thaw process and groundwater flow compared to regions with winter snowfall dominated precipitation. The seasonal hydrological processes in QLB are not fully understood due to the lack of soil temperature and groundwater observation data. A coupled surface and subsurface thermal hydrology model was applied to simulate the freeze-thaw process of SFG and groundwater flow in the QLB. The results indicate that SFG begins to freeze in early November, reaches a maximum freezing depth of approximately 2 meters in late March, and thaws completely by June. This freeze-thaw process is primarily governed by the daily air temperature variations. During the early rainy season from April to June, the remaining SFG in deep soil hinders the majority of rainwater infiltration, resulting in a two-month delay in the peak of groundwater discharge compared to scenario with no SFG present. Colder conditions intensify this effect, delaying peak discharge by 3 months, whereas warmer conditions reduce the lag to 1 month. The ice saturation distribution along the hillslope is affected by topography, with a 10 cm deeper ice saturation distribution and 3 days delay of groundwater discharge in the steep case compared to the flat case. These findings highlight the importance of the freeze-thaw process of SFG on hydrological processes in regions dominated by summer rainfall, providing valuable insights into the hydro-ecological response. Enhanced understanding of these dynamics may improve water resource management strategies and support future research into climate-hydrology interactions in SFG-dominated landscapes.
Freeze-thaw (FT) events profoundly perturb the biochemical processes of soil and water in mid- and high-latitude regions, especially the riparian zones that are often recognized as the hotspots of soil-water interactions and thus one of the most sensitive ecosystems to future climate change. However, it remains largely unknown how the heterogeneously composed and progressively discharged meltwater affect the biochemical cycling of the neighbor soil. In this study, stream water from a valley in the Chinese Loess Plateau was frozen at -10 degrees C for 12 hours, and the meltwater (at +10 degrees C) progressively discharged at three stages (T1 similar to T3) was respectively added to rewet the soil collected from the same stream bed (Soil+T1 similar to Soil+T3). Our results show that: (1) Approximately 65% of the total dissolved organic carbon and 53% of the total NO3--N were preferentially discharged at the first stage T1, with enrichment ratios of 1.60 similar to 1.94. (2) The dissolved organic matter discharged at T1 was noticeably more biodegradable with significantly lower SUVA(254) but higher HIX, and also predominated with humic-like, dissolved microbial metabolite-like, and fulvic acid-like components. (3) After added to the soil, the meltwater discharged at T1 (e.g., Soil+T1) significantly accelerated the mineralization of soil organic carbon with 2.4 similar to 8.07-folded k factor after fitted into the first-order kinetics equation, triggering 125 similar to 152% more total CO2 emissions. Adding T1 also promoted significantly more accumulation of soil microbial biomass carbon after 15 days of incubation, especially on the FT soil. Overall, the preferential discharge of the nutrient-enriched meltwater with more biodegradable DOM components at the initial melting stage significantly promoted the microbial growth and respiratory activities in the recipient soil, and triggered sizable CO2 emission pulses. This reveals a common but long-ignored phenomenon in cold riparian zones, where progressive freeze-thaw can partition and thus shift the DOM compositions in stream water over melting time, and in turn profoundly perturb the biochemical cycles of the neighbor soil body.
Soil freeze-thaw cycles (FTCs) are common in temperate agricultural ecosystems during the non-growing season and are progressively influenced by climate change. The impact of these cycles on soil microbial communities, crucial for ecosystem functioning, varies under different agricultural management practices. Here, we investigated the dynamic changes in soil microbial communities in a Mollisol during seasonal FTCs and examined the effects of stover mulching and nitrogen fertilization. We revealed distinct responses between bacterial and fungal communities. The dominant bacterial phyla reacted differently to FTCs: for example, Proteobacteria responded opportunistically, Actinobacteria, Acidobacteria, Choroflexi and Gemmatimonadetes responded sensitively, and Saccharibacteria exhibited a tolerance response. In contrast, the fungal community composition remained relatively stable during FTCs, except for a decline in Glomeromycota. Certain bacterial OTUs acted as sensitive indicators of FTCs, forming keystone modules in the network that are closely linked to soil carbon, nitrogen content and potential functions. Additionally, neither stover mulching nor nitrogen fertilization significantly influenced microbial richness, diversity and potential functions. However, over time, more indicator species specific to these agricultural practices began to emerge within the networks and gradually occupied the central positions. Furthermore, our findings suggest that farming practices, by introducing keystone microbes and changing interspecies interactions (even without changing microbial richness and diversity), can enhance microbial community stability against FTC disturbances. Specifically, higher nitrogen input with stover removal promotes fungal stability during soil freezing, while lower nitrogen levels increase bacterial stability during soil thawing. Considering the fungal tolerance to FTCs, we recommend reducing nitrogen input for manipulating bacterial interactions, thereby enhancing overall microbial resilience to seasonal FTCs. In summary, our research reveals that microbial responses to seasonal FTCs are reshaped through land management to support ecosystem functions under environmental stress amid climate change.
Accurately quantifying the impact of permafrost degradation and soil freeze-thaw cycles on hydrological processes while minimizing the reliance on observational data are challenging issues in hydrological modeling in cold regions. In this study, we developed a modular distributed hydro-thermal coupled hydrological model for cold regions (DHTC) that features a flexible structure. The DHTC model couples heat-water transport processes by employing the conduction-advection heat transport equation and Richard equation considering ice-water phase change. Additionally, the DHTC model integrates the influence of organic matter into the hydrothermal parameterization scheme and includes a subpermafrost module based on the flow duration curve analysis to estimate cold-season streamflow sustained by subpermafrost groundwater. Moreover, we incorporated energy consumption due to ice phase changes to the available energy, enhancing the accuracy of evaporation estimation in cold regions. A comprehensive evaluation of the DHTC model was conducted. At the point scale, the DHTC model accurately replicates daily soil temperature and moisture dynamics at various depths, achieving average R-2 of 0.98 and 0.87, and average RMSE of 0.61degree celsius and 0.03 m(3)m(-3), respectively. At the basin scale, DHTC outperformed (Daily: R-2 = 0.66, RMSE = 0.75 mm; Monthly: R-2 = 0.90, RMSE = 15.7 mm) the GLDAS/FLDAS Noah, GLDAS/VIC, and PML-V2 models in evapotranspiration simulation. The DHTC model also demonstrated reasonable performance in simulating daily (NSE = 0.70, KGE = 0.84), monthly (NSE = 0.86, KGE = 0.90), and multi-year monthly (NSE = 0.97, KGE = 0.93) streamflow in the Source Regions of Yangtze River. DHTC also successfully reproduced the snow depth in basin-averaged time series and spatial distributions (RMSE = 0.86 cm). The DHTC model provides a robust tool for exploring the interactions between permafrost and hydrological processes, and their responses to climate change.
Frozen ground (FG) plays an important role in global and regional climates and environments through changes in land freeze-thaw processes, which have been conducted mainly in different regions. However, the changes in land surface freeze-thaw processes under climate change on a global scale are still unclear. Based on ERA5-Land hourly land skin temperature data, this study evaluated changes in the global FG area, global land surface first freeze date (FFD), last freeze date (LFD) and frost-free period (FFP) from 1950 to 2020. The results show that the current FG areas (1991-2020 mean) in the Northern Hemisphere (NH), Southern Hemisphere (SH), and globe are 68.50 x 10(6), 9.03 x 10(6), and 77.53 x 10(6) km(2), which account for 72.4%, 26.8%, and 60.4% of the exposed land (excluding glaciers, ice sheets, and water bodies) in the NH, SH and the globe, respectively; further, relative to 1951-1980, the FG area decreased by 1.9%, 8.8%, and 2.8%, respectively. Seasonally FG at lower latitudes degrades to intermittently FG, and intermittently FG degrades to non-frozen ground, which caused the global FG boundary to retreat to higher latitudes from 1950 to 2020. The annual FG areas in the NH, SH, and globe all show significant decreasing trends ( p < 0.05) from 1950 to 2020 at -0.32 x 10(6), -0.22 x 10(6), and -0.54 x 10(6) km(2) per decade, respectively. The FFP prolongation in the NH is mainly influenced by LFD advance, while in the SH it is mainly controlled by FFD delay. The prolongation trend of FFP in the NH (1.34 d per decade) is larger than that in the SH (1.15 d per decade).
Soil parameters form the foundation of hydrogeological research and are crucial for studying engineering construction and maintenance, climate change, and ecological environment effects in cold regions. However, the soil properties in the permafrost region of the Qinghai-Tibet Plateau (QTP) remain unclear. Hence, in this study, soil temperature (Ts), volumetric specific heat capacity (C), thermal conductivity (K), thermal diffusivity (D), soil water content (SWC), electric conductivity (EC), vertical (Kv) and horizontal (Kh) saturated hydraulic conductivity, bulk density (rho b), and soil texture near the Qinghai-Tibet Railway were measured, and their effects on the freeze-thaw process were evaluated. The results revealed a predominantly sandy loam soil texture, with Kh and Kv showing strong spatial variability, while the other parameters presented moderate spatial variability. Thermokarst lake had a limited influence on D, C, K, and rho b but significantly reduced Kh and Kv. Groundwater affected SWC, Ts, and EC. The model results showed that all parameters indicated small sensitivities to the maximum thawing depth (MTD), with MTD positively responding to all parameters except for Kv and porosity (rho p). Except for Kh and Kv, all parameters showed high sensitivities to the time from starting to complete freezing (TSCF). TSCF responded positively to C, rho p, and density (rho d) and negatively to K and Kh. This study expanded the quantification of soil properties in the QTP, which can help improve the accuracy of cryohydrogeologic models, thus guiding the construction and maintenance of infrastructure engineering.