共检索到 2

Changing precipitation patterns and global warming have greatly changed winter snow cover, which can affect litter decomposition process by altering soil microenvironment or microbial biomass and activity. However, it remains unknown how and to what extent snow cover affects litter decomposition during winter and over longer periods of time. Here, we conducted a meta-analysis to synthesize litter decomposition studies under different levels of snow cover. Overall, deepened snow significantly enhanced litter decomposition rate and mass loss by 17% and 3%, respectively. Deepened snow enhanced litter carbon loss by 7% but did not impact the loss of litter nitrogen or phosphorus. Deepened snow increased soil temperature, decreased the frequency of freeze-thaw cycles, and stimulated microbial biomass carbon and bacterial biomass during winter, but had no effect on these parameters in summer. The promoting effect of deepened snow cover on litter decomposition in winter is mainly due to its positive effect on microbial decomposition by increasing soil temperature and reducing freezethaw cycles exceeded its negative effect on physical fragmentation of litter by reducing freeze-thaw cycles. Our findings indicate that the changes in winter snow cover under global change scenarios can greatly impact winter litter decomposition and the associated carbon cycling, which should be taken into consideration when assessing the global carbon budget in modeling.

2024-06-01 Web of Science

In the context of global warming, increasingly widespread and frequent freezing and thawing cycles (FTCs) will have profound effects on the biogeochemical cycling of soil carbon and nitrogen. FTCs can increase soil greenhouse gas (GHG) emissions by reducing the stability of soil aggregates, promoting the release of dissolved organic carbon, decreasing the number of microorganisms, inducing cell rupture, and releasing carbon and nitrogen nutrients for use by surviving microorganisms. However, the similarity and disparity of the mechanisms potentially contributing to changes in GHGs have not been systematically evaluated. The present study consolidates the most recent findings on the dynamics of soil carbon and nitrogen, as well as GHGs, in relation to FTCs. Additionally, it analyzes the impact of FTCs on soil GHGs in a systematic manner. In this study, particular emphasis is given to the following: (i) the reaction mechanism involved; (ii) variations in soil composition in different types of land (e.g., forest, peatland, farmland, and grassland); (iii) changes in soil structure in response to cycles of freezing temperatures; (iv) alterations in microbial biomass and community structure that may provide further insight into the fluctuations in GHGs after FTCs. The challenges identified included the extension of laboratory-scale research to ecosystem scales, the performance of in-depth investigation of the coupled effects of carbon, nitrogen, and water in the freeze-thaw process, and analysis of the effects of FTCs through the use of integrated research tools. The results of this study can provide a valuable point of reference for future experimental designs and scientific investigations and can also assist in the analysis of the attributes of GHG emissions from soil and the ecological consequences of the factors that influence these emissions in the context of global permafrost warming.

2024-05-01 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页