共检索到 183

Freeze-thaw cycles (FTC) influence soil erodibility (K-r) by altering soil properties. In seasonally frozen regions, the coupling mechanisms between FTC and water erosion obscure the roles of FTC in determining soil erosion resistance. This study combined FTC simulation with water erosion tests to investigate the erosion response mechanisms and key drivers for loess with varying textures. The FTC significantly changed the mechanical and physicochemical characteristics of five loess types (P < 0.05), especially reducing shear strength, cohesion, and internal friction angle, with sandy loam exhibiting more severe deterioration than silt loam. Physicochemical indices showed weaker sensitivity to FTC versus mechanical properties, with coefficients of variation below 5 %. Wuzhong sandy loess retained the highest K-r post-FTC, exceeding that of the others by 1.04 similar to 2.25 times, highlighting the dominant role of texture (21.37 % contribution). Under different initial soil moisture contents (SMC), K-r increased initially and then stabilized with successive FTC, with a threshold effect of FTC on K-r at approximately 10 FTC. Under FTC, the K-r variation rate showed a concave trend with SMC, turning point at 12 % SMC, indicating that SMC regulates freeze-thaw damage. Critical shear stress exhibited an inverse response to FTC compared to K-r, displaying lower sensitivity. The established K-r prediction model achieved high accuracy (R-2 = 0.87, NSE = 0.86), though further validation is required beyond the design conditions. Future research should integrate laboratory and field experiments to expand model applicability. This study lays a theoretical foundation for research on soil erosion dynamics in freeze-thaw-affected areas.

期刊论文 2025-10-01 DOI: 10.1016/j.jhydrol.2025.133489 ISSN: 0022-1694

Soil chemical washing has the disadvantages of long reaction time, slow reaction rate and unstable effect. Thus, there is an urgent need to find a cost-effective and widely applicable alternative power to facilitate the migration of washing solutions in the soil, so as to achieve efficient removal of heavy metals, reduce the risk of soil compaction, and mitigate the damage of soil structure. Therefore, the study used a combination of freeze-thaw cycle (FTC) and chemical washing to obtain three-dimensional images of soil pore structure using micro-X-ray microtomography, and applied image analysis techniques to study the effects of freeze-thaw washing on the characteristics of different pore structures of the soil, and then revealed the effects of pore structure on the removal of heavy metals. The results showed that the soil pore structure of the freeze-thaw washing treatment (FT) became more porous and complex, which increased the soil imaged porosity (TIP), pore number (TNP), porosity of macropores and irregular pores, permeability, and heavy metal removal rate. Macroporosity, fractal dimension, and TNP were the main factors contributing to the increase in TIP between treatments. The porous structure resulted in larger effective pore diameters, which contain a greater number of branching pathways and pore networks, allowing the chemical washing solutions to fully contact the soil, increasing the roughness of the soil particle surface, mitigating the risk of soil compaction, and decreasing the contamination of heavy metals. The results of this study contribute to provide new insights into the management of heavy metal pollution in agricultural soils.

期刊论文 2025-09-01 DOI: 10.1007/s11270-025-08245-y ISSN: 0049-6979

The present paper sets out a comparative analysis of carbon emission and economic benefit of different performance gradients solid waste based solidification material (SSM). The macro properties of SSM were the focus of systematic study, with the aim of gaining deeper insight into the response of the SSM to conditions such as freeze-thaw cycles, seawater erosion, dry-wet cycles and dry shrinkage. In order to facilitate this study, a range of analytical techniques were employed, including scanning electron microscopy (SEM), X-ray diffraction (XRD) and mercury intrusion porosimetry (MIP). The findings indicate that, in comparison with cement, the carbon emissions of SSM (A1) are diminished by 77.7 %, amounting to 190 kg/t, the carbon-performance ratio (24.4 kg/ MPa), the cost-performance ratio (32.1RMB/MPa) and the carbon-cost ratio (0.76kg/RMB) are reduced by 86 %, 56 % and 68 % respectively. SSM demonstrated better performance in terms of freeze-thaw resistance, seawater erosion resistance and dry-wet resistance when compared to cement. The dry shrinkage value of SSM solidified soil was reduced by approximately 35 % at 40 days compared to cement solidified soil, due to compensatory shrinkage and a reduction in pores. In contrast to the relatively minor impact of seawater erosion and the moderate effects of the wet-dry cycle, freeze-thaw cycles have been shown to cause the most severe structural damage to the micro-structure of solidified soil. The conduction of durability tests resulted in increased porosity and the most probable aperture. The increase in pores and micro-structure leads to the attenuation of macroscopic mechanical properties of SSM solidified soil. The engineering application verified that with the content of SSM of 50 kg/m, 4.5 % and 3 %, the strength, bearing capacity and bending value of SSM modified soil were 1.9 MPa, 180 kPa and 158, respectively in deep mixing piles, shallow in-situ solidification, and roadbed modified soil field.

期刊论文 2025-09-01 DOI: 10.1016/j.mtsust.2025.101135 ISSN: 2589-2347

High-strength mortar (HSM) gradually has wide applications due to its exceptional strength, micro-expansion properties, and excellent fluidity. Behavior deterioration of structures in saline soil areas is primarily attributed to freeze-thaw cycles and sulfate attack. In this study, the coupling effect of freeze-thaw cycles and sulfate attack on the appearance, mass loss, and relative dynamic elastic modulus of HSM was investigated during erosion. Then, compressive experiments were conducted to assess the mechanical properties of HSM subjected to both freeze-thaw cycles and sulfate attack. The influences of coupling freeze-thaw cycles and sulfate attack on the compressive properties of HSM were quantified through regression analysis of experimental results. Empirical models for compressive stress-strain curves and damage constitutive behavior of HSM were developed, taking the coupled adverse effect into account. The results indicate that the coupled effect of freeze-thaw cycles and sulfate attack causes performance deterioration of HSM. The empirical models reproduce the compressive behaviors of HSM subjected to freeze-thaw cycles and sulfate attack.

期刊论文 2025-08-01 DOI: 10.1016/j.jobe.2025.112788

In this paper, through extensive on-site research of the plain concrete composite foundation for the Jiuma Expressway, the study conducted proportional scaling tests. This study focused on the temperature, moisture, pile-soil stress, and deformation of this foundation under freeze-thaw conditions. The findings indicate that the temperature of the plain concrete pile composite foundation fluctuates sinusoidally with atmospheric temperature changes. As the depth increases, both temperature and lag time increase, while the fluctuation range decreases. Furthermore, the effect of atmospheric temperature on the shoulder and slope foot is more significant than on the interior of the road. During the freeze-thaw cycle, the water content and pore-water pressure in the foundation fluctuate periodically. The pile-soil stress fluctuates periodically with the freeze-thaw cycle, with the shoulder position exhibiting the most significant changes. Finally, the road displays pronounced freeze-thaw deformations at the side ditch and slope toe. This study provides a valuable basis for the construction of highway projects in cold regions.

期刊论文 2025-08-01 DOI: 10.1061/IJGNAI.GMENG-10352 ISSN: 1532-3641

Volume changes in soil caused by freeze-thaw cycles can affect the shear performance of the saline soil-geotextile interface. To investigate this issue, the study examined changes in shear strength, deformation characteristics, and failure modes of the saline soil-geotextile interface under different numbers of freeze-thaw cycles. The experimental results indicate that with the increase in freeze-thaw cycles, the shear stiffness of the interface initially increases and then decreases, demonstrating the reduction in elasticity and resistance to deformation caused by freeze-thaw cycles. And the enhancement of normal stress can effectively increase the density of the soil and the adhesion at the interface, thereby improving shear stiffness. Meanwhile, the salt content in the soil also significantly impacts the mechanical properties, with notable changes in the dynamic characteristics of the interface as the salt content varies. Furthermore, after freeze-thaw actions, the soil becomes loose, reduces in integrity, features uneven surfaces, and sees increased internal porosity leading to slip surfaces. Trend analysis from this study provides new insights into the failure mechanisms at the saline soil-geotextile interface.

期刊论文 2025-08-01 DOI: 10.1016/j.geotexmem.2025.03.001 ISSN: 0266-1144

Freeze-thaw cycles pose a serious threat to the protection and preservation of earthen sites. To investigate the effects of freeze-thaw cycles on the shear strength and permeability of site soil, this study took artificially prepared site soil as the research object. Through triaxial shear tests and permeability tests, the strength and permeability characteristics of site soil under different sticky rice slurry content, sticky rice slurry density and freeze-thaw cycles were analyzed. In addition, the mineral composition, chemical structure, and microstructural characteristics of the samples were investigated by combining X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) tests. The results showed that the addition of sticky rice slurry could increase the shear strength and decrease the permeability coefficient of the soil, while the opposite effect was exhibited after freeze-thaw cycle. The optimum ratio of loess to sticky rice slurry was 95:5, and the optimum density of sticky rice slurry was 1.04 g/cm3. The addition of sticky rice slurry and the increase in the number of freeze-thaw cycles did not significantly change the mineral composition of the soil. The SEM results showed that the morphology and arrangement of soil particles became complex after freeze-thaw cycle, the inter-particle connections became loose, and the pore morphology became irregular. The surface porosity of the soil increased, and the proportion of large and medium pores increased. The directionality of the pores was enhanced, and the complexity of the pores increased. The pore arrangement became relatively stable after 15 freeze-thaw cycles. These findings can provide a reference for the restoration of ancient sites in loess areas.

期刊论文 2025-07-25 DOI: 10.1016/j.conbuildmat.2025.141878 ISSN: 0950-0618

The stability of soil in high-altitude regions is significantly affected by freeze-thaw cycles, which alter its mechanical and physical properties. This study investigates the impact of 12 consecutive freeze-thaw cycles on poorly graded sandy-silt soil collected from Arunachal Pradesh. To enhance soil resistance, a bio-slurry containing urea (60 g/L) and calcium chloride (111 g/L), along with vetiver and bamboo fibers (by soil weight), was introduced as a stabilizing agent. The durability of the treated soil was evaluated by measuring the weight fluctuations after each cycle and assessing unconfined compressive strength (UCS) after 5, 10, and 12 cycles. The results revealed that untreated soil experienced a 50% reduction in UCS, while bioslurry-treated soil retained 70-80% of its original strength after 12 freeze-thaw cycles. The greatest strength retention was observed in soil treated with bioslurry and bamboo fiber, which retained 80% of its strength, followed by vetiver-treated soil at 75% strength retention. Weight loss measurements indicated that untreated soil samples lost 9.5% of their initial mass, whereas bioslurry-treated samples exhibited only a 3-5% weight loss. The findings of the study highlight the potential of bioslurry and natural fibers in mitigating freeze-thaw-induced soil degradation, making them suitable for applications in geotechnical engineering in cold-climate regions.

期刊论文 2025-07-03 DOI: 10.1080/01490451.2025.2485468 ISSN: 0149-0451

Freeze-thaw (FT) cycles significantly affect soil permeability and could cause geological and environmental disasters. This study investigated the influence of FT cycles on the permeability of compacted clay through triaxial permeability tests, considering freezing temperature, cycle number, water content, and confining pressure. Scanning electron microscopy and nuclear magnetic resonance tests were performed to analyze the microstructure and pore characteristics of the clay during FT cycles. The results show that the hydraulic conductivity of the clay decreases significantly at high confining pressures due to soil consolidation. When the confining pressure exceeds 150 kPa, the impact of FT cycles on hydraulic conductivity becomes negligible. The increased number of FT cycles, exposure to lower freezing temperatures, and higher water content lead to more pronounced soil structure damage, resulting in a substantial increase in hydraulic conductivity. FT cycles cause macropores and microcracks to form and increase the average pore radius, creating preferential seepage pathways. Correlation analysis indicates that the increase in macropore content under various FT cycles is the primary reason for the increased hydraulic conductivity. Based on the modified Kozeny-Carman equation, a prediction model is developed to effectively estimate the hydraulic conductivity. These results provide valuable insight into the damage mechanism of clay permeability in seasonally frozen regions from a microscale perspective.

期刊论文 2025-07-01 DOI: 10.1061/IJGNAI.GMENG-10561 ISSN: 1532-3641

The fundamental cause of frost heave and salt expansion of saline soil is the water condensation and salt crystallization during the freezing process. Therefore, controlling the water and salt content is crucial to inhibit the expansion behaviors of saline soil. Recently, electroosmosis has been demonstrated to accelerate soil dewatering by driving hydrated cations. However, its efficiency in mitigating the salt-induced freezing damages of saline soil requires further improvement. In this study, a series of comparative experiments were conducted to investigate the synergistic effects of electroosmosis and calcium chloride (CaCl2) on inhibiting the deformation of sodium sulfate saline soil. The results demonstrated that electroosmosis combined with CaCl2 dramatically increased the cumulative drainage volume by improving soil conductivity. Under the external electric field, excess Na+ and SO42- ions migrated towards the cathode and anode, respectively, with a portion being removed from the soil via electroosmotic flow. These processes collectively contributed to a significant reduction in the crystallization-induced deformation of saline soil. Additionally, abundant Ca2+ ions migrated to cathode under the electric force and reacted with OH- ions or soluble silicate to form cementing substances, significantly improving the mechanical strength and freeze-thaw resistance of the soil. Among all electrochemical treatment groups, the soil sample treated with 10 % CaCl2 exhibited optimal performance, with a 71 % increase in drainage volume, a 180 similar to 443 % enhancement in shear strength, and a 65.1 % reduction in freezing deformation. However, excessive addition of CaCl2 resulted in the degradation of soil strength, microstructure, and freeze-thaw resistance.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04906 ISSN: 2214-5095
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共183条,19页